

CONSTRAINT THEORY

2nd Edition

Fronticepiece

24” Doily, designed and constructed by Regina Oberlander (Dr.

Friedman's mother) circa 1915 in Chinedeev, near Muncacevo, Austro-

Hungarian Empire.

A single circuit cluster with over 1,000 independent simple circuits (thus

there are 1000 more edges than vertices)

Constraint theory

iii

Springer Academic Publishers

New York, NY 10013

ISBN 0-387-23418-7

CONSTRAINT THEORY
Multidimensional Mathematical Model
Management

By

Dr. George J. Friedman

And Dr. Phan Phan

2
nd

 Edition v1.08

 Constraint theory

vi

Dedication

This book is dedicated to our

wives, who have helped us find

the time and priority for our

mathematical dreams.

Preface

At first glance, this might appear to be a book on mathematics, but it is

really intended for the practical engineer who wishes to gain greater control

of the multidimensional mathematical models which are increasingly an

important part of his environment. Another feature of the book is that it

attempts to balance left- and right-brain perceptions; the authors have

noticed that many graph theory books are disturbingly light on actual

topological pictures of their material.

Constraint Theory was originally defined by George Friedman in his PhD

dissertation at UCLA in 1967 and subsequent papers written over the

following decade. There was a dearth of constraint theory publication after

the 1970’s as Dr. Friedman was working on several classified aerospace

programs wherein publication of any kind was most difficult. The first

edition of this book was published in 2005. Constraint Theory was further

extended by Phan Phan in his PhD dissertation at USC in 2011, leading to

this second edition.

Acknowledgments

Over the past several years, Constraint Theory has been a substantial part

of a special graduate course in the Systems Architecture and Engineering

program at the University of Southern California, where the authors are

faculty members. The feedback from this group of bright graduate students

was invaluable. Special thanks are given to these graduate students who

performed research studies -- summarized in Appendix A -- on Constraint

Theory: Leila Habibibabadi, Kathya Zamora-Diaz and Elliott Morgan [1].

Extra special thanks are given to Mr. Gary L. Friedman who provided the

extremely valuable service of intellectual reflector, editor and digital format

manager.

Introduction

Many thousands of papers have been written about the accelerating pace

of increased complexity and interactivity in virtually every walk of life in the

developed world. Domains which previously could have been studied and

managed separately -- such as energy, the environment and economics --

must now be dealt with as intimately intertwined disciplines. With its

multitude of additional capabilities, complex systems also provide a

treacherous array of fragile failure modes, and both the development and

operation of new systems are an increasing challenge to the systems

engineer. Advanced technology is the primary driving force behind the

increasing complexity and the enthusiastic pushing of immature technologies

is behind most of the early failures in the development phases.

Perhaps the most significant advanced technology employed in new

complex systems is the computer science family with its ancillary disciplines

of communications and software. Fortunately, computer science also

represents a major opportunity to control the design and operation of

complex systems because of its ability to perform multi-dimensional

modeling to any level of detail desired. Math models have been used in

support of every phase of systems engineering, including requirements

management, preliminary design, interface and integration, validation and

test, risk management, manufacturing, reliability and maintainability,

training, configuration management and developing virtual universes to

measure customer preferences prior to the implementation of the design.

Properly used, the enormous power of modern computers can even furnish

researchers with a synthetic world where theories can be tried and tested on

validated models, thus avoiding far more expensive tests in the real world.

A wide variety of questions -- or “tradeoffs’ -- can be asked of the models

and, at least in theory, the analyst has a free choice as to which computations

he wishes to observe and which variables he desires to be independent.

Philosophically, it can even be argued that the math model employed in this

fashion provides the technologist a virtual extension of the scientific method

itself.

Those who have actually wrestled with large-scale models will complain

that the above description is far too rosy. Submodels which are developed

 Constraint theory

xii

by separate organizations are normally very difficult to integrate into an

overall working model; they often must be dealt with as “islands of

automation.” The greatest of care must be taken to make sure that the

definition of each variable is clear and agreeable to every member of the

team. In general, it is difficult to distinguish between a model and the

computer program, and if a computational request is made which reverses

dependent and independent variables, then the model must be

reprogrammed. To say the least, much diligent effort must be undertaken to

obtain the many advantages promised by mathematical modeling.

However, even after due diligence, there exists a much deeper problem

that often diminishes the utility of math modeling; it is associated with the

traditional “well posed” problem in mathematics. We need to know whether

the model is internally consistent and whether computational requests made

on it are allowable. The alarming facts are that models constructed by

diverse teams -- and this is normally the case for very large models -- have

internal inconsistencies and that most of the possible computational requests

which can be made on even consistent models are not allowable. This

problem is the domain addressed by Constraint Theory and is the subject of

this book.

Chapter One provides an example of low dimension, showing how

problems of consistency and computational allowability can arise in even

simple situations. The reader is introduced to the two main characters of the

book -- an experienced manager and an analyst -- whose dialogue will

hopefully illuminate the book’s many concepts. The bipartite graph is

introduced, as are a few simple rules. However, the analyst argues that, in

order to expand the tools to models of very high dimension, and in order to

trust the reliability of these tools, the theory must be based on a more

rigorous foundation. “Only the simplest 5% of graph theory and set theory

are required”, he claims.

Chapter Two begins to establish the rigorous foundation by defining four

“views” of a mathematical model: 1) set theoretic, 2) submodel family, 3)

bipartite graph, and 4) constraint matrix. The first two views are full

models; the last two views are metamodels. Then, rigorous definitions of

consistency and computational allowability are made in the context of these

views.

Chapter Three discusses the similarities between language and

mathematics and provides some general consistency and computability

results with respect to any class of relation. In order to provide a basis for

the next three chapters, three classes of exhaustive and mutually exclusive

relations are defined: discrete, continuum, and interval.

Chapter Four addresses the constraint theoretic properties of regular

relations, the most important type within the continuum class, and the most

Table of Contents xiii

often employed in the development of multidimensional math models. The

simple rules presented in Chapter 1 are rigorously proved employing the

foundations of Chapters 2 and 3. The topological properties of the bipartite

graph are analyzed to provide key conclusions of the model’s consistency

and computational properties.

A specific type of subgraph within the bipartite graph, called the Basic

Nodal Square (BNS) is identified as the “kernel of intrinsic constraint” and is

accused of being the culprit in model inconsistency and unallowable

computability. Trivially easy computations on the bipartite graph -- such as

circuit rank and constraint potential -- are shown to have enormous utility in

locating the BNSs which hide in tangled circuit clusters.

Chapter Five discusses the general issue of constraint propagation

through a connected model graph of regular relations. A detailed procedure

for determining model consistency and computational allowability in such a

model is introduced. A constraint theory toolkit is provided to employ the

rules and theorems in an orderly manner and which can find BNSs trillions

of times faster than brute force approaches. Chapters Four and Five

represent the core of constraint theory at its present stage.

Chapter Six addresses the constraint properties of discrete and interval

functions such as those from Boolean algebra, logic and inequalities. These

classes of relations are less important in support of modern math modeling,

but strangely, they were the first that the author studied in his development

of Constraint Theory. It was easier for him to imagine multidimensional sets

of points than multidimensional sets of continuous functions. Interval

relations require the greatest interaction between models and metamodels,

and the concept of constraint potential is less useful than for regular

relations.

Chapter Seven provides a compact structure of constraint theory. All

postulates, definitions and theorems are listed and their logical

interrelationships are displayed in the form of quasi-bipartite graphs.

Chapter Eight presents detailed examples of the application of constraint

theory to the areas of operations analysis, kinematics of free-fall weapon

delivery systems and the dynamics of deflecting asteroids with mass drivers.

Chapter Nine summarizes the book and provides the manager and analyst

a final opportunity to dialogue and discuss their common background.

Problems for the interested student are presented at the end of most

chapters, so this book could be employed as a text for a graduate course -- or

senior level undergraduate course -- in Systems Engineering or mathematical

modeling.

Of course, a complete list of references is provided, as well as an index.

Several appendices treat detailed material to a depth that would slow

down the natural rhythm of the exposition if they were included in the

 Constraint theory

xiv

chapters themselves. Appendix A is noteworthy in that it summarizes the

research projects on “computational request disappointments.” On models

approximately the size of Chapter 1’s “simple example” -- eight variables --

the percentage of allowable computational requests based on the total

number of possible computational requests is only on the order of 10%. It is

presently “Friedman’s conjecture” that as the dimensionality, K, of the

model increases, the number of allowable computational requests also

increases, perhaps as fast as the square of the model’s dimension or K
2
.

However, the number of possible computational requests increases far faster:

2
K
. Thus, for a 100-dimension model, only 10

-26
 of all possible

computational requests will be allowable! Models of thousands of

dimensions have been built and are planned; so the ratio of allowable to

possible computational requests is enormously worse than even this

incredibly low number. The technologist who wishes to gain maximum

benefit from asking his model to perform any computation his imagination

conjures up will certainly be disappointed! A tool such as constraint theory

which will lead him to the 10,000 computational requests (K=100) or

1,000,000 requests (K=1,000) which are allowable should be valuable.

Appendix B provides a very brief overview of graph theory with the

objective of justifying why the bipartite graph was chosen as the primary

metamodel for constraint theory.

Appendix C describes the rigorous logic of the difference between “if and

only if” and “if” types of theorems. Most of constraint theory’s theorems are

of the latter category -- a source of confusion to many students.

Appendix D establishes fundamental algebraic structures which are

essential to implement constraint theory. These include definitions and

properties of general vector spaces and binary set operations.

A Warmup Problem in Complexity

This book makes substantial use of a mathematical structure from graph

theory called a bipartite graph. In the past, bipartite graphs have been

employed to solve “pairing” problems associated with various social

situations such as picnics or dinner parties.

Out of respect for this tradition, let us consider a set of five men -- named

Jack, Jake, Jude, Juan, and Jobe -- and a set of five women -- named Jane,

Joan, June, Jean, and Jenn. Let us define a relationship pattern as a

complete description of all heterosexual relationships between the five men

and five women. For example:

 In the communal pattern, every man has a relationship with every

woman. There is one such pattern.

 In the celibacy pattern, none of the men have a relationship with

any of the women. Again, there is one such pattern.

 In the male harem patterns, one of the men has a relationship

with each of the women, but all the other men are devoid of

relationships, except perhaps to be eunuchs. There are five such

patterns. Similarly, there are five possible female harem

patterns.

 In the monogamy patterns, each man has a relationship with

exactly one woman and vice versa. There are 5!=120 such

distinct patterns.

And so on. There are many more patterns. The question is: What is the

total number of possible heterosexual relationship patterns between five men

and five women?

The answer -- discussed in Chapter 4 and Appendix A -- may surprise

you: it’s over 30 million (!). It certainly surprised the author and changed an

 Constraint theory

xvi

important objective of his research agenda. Moreover it represents the

hidden depths possible in apparently simple problems of low dimension as

well as a challenge to one’s belief in intuition or rational mathematics.

About the Authors

George Friedman is a Professor of Practice in the

Astronautical Engineering Department of the

Viterbi School of Engineering of the University of

Southern California. He has developed and taught

graduate courses in systems engineering with

emphasis on the management of complexity and

decision science. This book is the product of one of

these courses.

He has had over 45 years of experience in

industry, retiring from the Northrop Corporation as

their Corporate Vice President of Engineering and

Technology. He worked on a wide variety of

aerospace programs and served as a consultant to all branches of the

Department of Defense, NASA, the National Science Foundation, and

Department of Energy as well as to the NATO industrial advisory group.

He was a founder of the International Council on Systems Engineering

(INCOSE), served as its third president, was elected a fellow and is on the

editorial board of INCOSE’s journal, Systems Engineering.

He has also been a member of the Institute of Electrical and Electronic

Engineers (IEEE) since its formation from the IRE and AIEE, was elected a

fellow and was the vice president for publications of the IEEE Transactions

on Aerospace and Electronics Systems. He received the Baker Prize for the

best paper published by all societies of the IEEE in 1970 -- the subject of the

paper was Constraint Theory.

 Constraint theory

xviii

He was a former director of research at the Space Studies Institute at

Princeton, and had supported several new technologies associated with the

long range development of space.

He received the Bachelor’s degree in engineering at the University of

California at Berkeley and the Masters and Doctorate at UCLA. The topic

of his PhD dissertation was constraint theory [2, 3].

Phan Phan is an Adjunct Lecturer in the

Astronautical Engineering Department of the

Viterbi School of Engineering of the University of

Southern California (USC). He has assisted and

taught graduate courses in systems engineering,

systems management, lean operations and economic

analysis.

He has had over 36 years of technical and

managerial experience in government, military and

various industries, including oil & gas exploration,

commercial and military aircraft, unmanned

sensors, and major weapon systems.

His industry assignments included Mobil Research & Development,

General Dynamics, Lockheed Aeronautical Systems, McDonnell Douglas

and Boeing Integrated Defense Systems. As a registered Professional

Engineer in California, he currently works as a reliability analyst with the

Naval Surface Warfare Center -- Corona Division.

He has also served in the U.S. Navy Reserve as an Engineering Duty

Officer, attaining the rank of Captain, and currently assigned to Naval Sea

Systems Command. His previous Navy assignments included Office of

Naval Research/Naval Research Laboratory, Program Executive Office

Integrated Warfare Systems, Naval Space & Warfare Systems Command,

Mobile Mine Assembly Group, Naval Weapons Station Seal Beach and

Naval Shipyard Long Beach.

He received his B.S. in Engineering from the University of Alabama in

Huntsville, Master of Engineering from the University of Texas at Arlington,

MBA from California State University - Fullerton, M.S. in Systems

Architecture & Engineering from USC, Master of Engineering Acoustics

from the Naval Postgraduate School, and Ph.D. in Industrial & Systems

Engineering from USC.

The topic of his doctoral dissertation was “Expanding Constraint Theory

to Determine Well-Posedness of Large Mathematical Models” [22], the main

contribution to the second edition of this book.

.

Contents

CHAPTER 1 -- MOTIVATIONS 1

WHAT IS CONSTRAINT THEORY AND WHY IS IT IMPORTANT?

1.1 TRENDS AND PROBLEMS IN SYSTEM TECHNOLOGIES

1.2 AN EXAMPLE OF LOW DIMENSION

1.3 THE MANAGER AND ANALYST CONTINUE THEIR DIALOGUE

1.4 PRELIMINARY CONCLUSIONS

1.5 A LITTLE WINDOW INTO FUTURE CHAPTERS

1.6 PROBLEMS FOR THE CURIOUS READER

CHAPTER 2: THE FOUR-FOLD WAY 25

HOW TO PERCEIVE COMPLEX MATHEMATICAL MODELS AND

WELL-POSED PROBLEMS

2.1 PROLOGUE: THE MANAGER AND ANALYST DISCUSS THE

ORIGINS OF MULTIDIMENSIONAL MODELS AND WELL-

POSEDNESS

2.2 THE FIRST VIEW: SET THEORETIC

2.3 THE SECOND VIEW: FAMILY OF SUBMODELS

2.4 THE THIRD VIEW: THE BIPARTITE GRAPH

2.5 THE FOURTH VIEW: THE CONSTRAINT MATRIX

2.6 MODEL CONSISTENCY AND COMPUTATIONAL ALLOWABILITY

2.7 THE MANAGER AND ANALYST CONTINUE THEIR DIALOGUE

2.8 CHAPTER SUMMARY

2.9 PROBLEMS FOR THE INTERESTED STUDENT

 Constraint theory

xx

CHAPTER 3: GENERAL RESULTS 49

FROM PROTOMATH TO MATH TO METAMATH

3.1 LANGUAGE AND MATHEMATICS

3.2 MOST GENERAL TRUSTWORTHY RESULTS

3.3 CLASSES OF RELATIONS

3.4 MANAGER AND ANALYST REVISITED

3.5 CHAPTER SUMMARY

3.6 PROBLEMS FOR THE GENERAL STUDENT

CHAPTER 4: REGULAR RELATIONS 61

SEARCHING FOR THE KERNELS OF CONSTRAINT

4.1 COGNITIVE BARRIERS TO CIRCUITS

4.2 NODE, KNOT AND BASIC NODAL SQUARE SANCTIFICATION

4.3 USEFUL PROPERTIES OF BAPARTITE GRAPHS

4.4 CORNERING THE CULPRIT KERNELS; TEN EASY PIECES

4.5 CONTINUING THE PURSUIT INSIDE THE CIRCUIT CLUSTERS (CC)

4.6 LOCATING THE BNSS WITHIN A MODEL GRAPH

4.7 QUERIES FOR THE REGULAR STUDENT

CHAPTER 5: MODEL CONSISTENCY AND COMPUTATIONAL 101

 ALLOWABILITY

5.1 ZERO CONSTRAINT ALL ALONG THE COMPUTATIONAL PATH

5.2 RECAPITULATION OF COMPUTATIONAL FLOW

5.3 GENERAL PROCEDURE FOR DETERMINING CONSISTENCY AND

ALLOWABILITY IN A MODEL OF REGULAR RELATIONS

5.4 DETECTION OF OVERLAPPING BNS

5.5 RELIEF OF OVER-CONSTRAINT

5.6 EXPANSION OF RESULTANT CONSTRAINT DOMAINS

5.7 PROCESSING OF COMPUTATIONAL REQUESTS

5.8 SUMMARY OF CHAPTER AND CONSTRAINT THEORY TOOLKIT

5.9 QUERIES FOR THE REGULAR STUDENT

CHAPTER 6: DISCRETE AND INTERVAL RELATIONS 137

THE DIMINISHED UTILITY OF METAMODELS

6.1 METAMODEL ISSUES AND PERSPECTIVES

6.2 THE GENERAL TAXONOMY AND PRIMARY PROPERTY OF

DISCRETE RELATIONS

6.3 BOLEAN RELATIONS

6.4 TOPOLOGICAL IMPLICATIONS

6.5 ALLOWABILITY OF DISCRETE COMPUTATIONS

6.6 INEQUALITY RELATIONS

6.7 SUMMARY

6.8 PROBLEMS FOR THE DISCRETE STUDENT

Table of Contents xxi

CHAPTER 7: THE LOGICAL STRUCTURE OF CONSTRAINT THEORY 155

A COMPACT SUMMARY

7.1 OVERVIEW

7.2 POSTULATES AND PHILOSOPHICAL ASSUMPTIONS

7.3 DEFINITIONS

7.4 THEOREMS

7.5 GRAPHS OF THE LOGICAL STRUCTURE OF CONSTRAINT THEORY

7.6 COMPLETENESS

CHAPTER 8: EXAMPLES OF CONSTRAINT THEORY APPLIED TO REAL-

WORLD PROBLEMS 163

8.1 APOLOGIES NOT REQUIRED

8.2 COST AS AN INDEPENDENT VARIABLE (CAIV)

8.3 THE KINEMATICS OF FREE-FALL WEAPONS

8.4 THE DEFLECTION OF AN EARTH-THREATENING ASTEROID

EMPLOYING MASS DRIVERS

CHAPTER 9: MANAGER AND ANALYST MEET AGAIN 183

GISTS AND SCHIZOPHRENIA

APPENDICES

APPENDIX A: COMPUTATIONAL REQUEST DISAPPOINTMENTS; 189

RESULTS OF THE USC ALLOWABILITY PROJECT

APPENDIX B: GRAPH THEORY OVERVIEW 197

APPENDIX C: THE LOGIC OF "IF" AND "IF AND ONLY IF" 201

APPENDIX D: ALGEBRAIC STRUCTURES 203

REFERENCES 211

INDEX 215

Chapter 1 MOTIVATIONS

What is Constraint Theory and why is it important?

1.1 TRENDS AND PROBLEMS IN SYSTEM

TECHNOLOGIES

Gone forever are the simple days! Virtually every identifiable trend is

driving humanity’s enterprises into more intimate interaction and conflict.

Increased population, accelerated exploitation of resources, and expanded

transportation have brought the previously decoupled worlds of economics,

energy and the environment into direct conflict. With the greater efficiency

of travel and communication, the emergence of global marketplaces and the

revolution in military strategies, the international world is incredibly more

interactive, multidimensional and complex than even a decade ago. Locally,

we observe ever tighter coupling between emerging problems in crime,

poverty, education, health and drug misuse. All these issues have been

aggravated by an explosion of new technology and -- especially in the

United States -- a compulsion to force these new technologies into early and

often simultaneous application. The most vigorous of these advancing

technologies -- digital computation -- brings with it an unexpected

complexity challenge: software and the management of highly complex and

multidimensional mathematical models.

Fortunately, this most rapidly advancing technology of computer science

not only adds to the complexity of designed systems, it also contributes

enormously to designing these systems themselves. A host of new

“computer assisted” software packages are published each year, running the

gamut from Computer Assisted Design (CAD), Computer Assisted

Engineering (CAE), Computer Assisted Systems Engineering (CASE),

Computer Assisted Manufacturing (CAM), Computer Assisted Instruction

 Constraint theory

2

(CAI), and eventually to Computer Assisted Enterprise Management

(CAEM). This family of tools permits the design engineers to control a

virtually unlimited number of variables, to predict behaviors and

performance of systems still in their early conceptual stages, to optimize

with respect to detailed criteria, to effect interdisciplinary integration and to

perform design changes with unprecedented speed and accuracy. It is not an

exaggeration to claim that without this array of computer-based tools, many

systems that exist today would have been impossible to design and

implement.

However, as most systems engineers who attempt to gain benefit from

these tools are well aware, computer-based design is a mixed blessing. A

common complaint is that the various programs which support facets of the

total problem are “islands of automation” -- they are difficult to integrate

into a total system problem solving capability. Another problem is that the

tools are virtually useless in sorting out the variety of languages and

technical shades of meaning, especially on highly interdisciplinary systems.

Yet another challenge for the engineering and program managers is the

vigorous and frequent upgrading of every hardware and software package

causing unprecedented costs of initial installation and training to the overall

design process, not to mention the inevitable bugs in the early versions.

Many companies have even established new organizations whose members

are expert in computer-assisted programs, and not expert in the technical

design itself.

Observers who watched the agonizing entry of computers over the last

several decades into many diverse worlds such as financial management,

stock market trading, airline ticketing, air traffic control, and education

should be optimistic that eventually computer-based design will also become

an efficient tool which will become so easy to use that investing in it will be

clearly justified. But in order for this dream to occur, there are more

problems to solve -- deeper problems than getting the definitions sorted out

and software packages to work together.

Even when the willing but cognitively challenged computational giants

of computer based tools are completely manageable, several fundamental

problems will still exist, mostly on the cognition and mathematical levels.

Nothing is said in any of the present set of textbooks on Systems

Engineering about the regrettable “subdimensionality” of the human

intellect. Despite the fact that a thorough description of a modern complex

system requires the understanding and integration of hundreds to thousands

of variables, cognitive scientists have known for decades that the human

mind is limited in its perceptive powers to a mere half-dozen dimensions.

Regardless of all our other miraculous gifts such as language, art, music,

imagination, judgment, and conscience, our dimensional perceptive power is

1. Motivations

3

tiny compared to the challenges of designing complex systems, and sadly, it

appears that this is a “wired in” shortcoming of our nervous system and thus

we can not hope to be trained to attain a higher perceptive capability. This

“dimensionality gap” is severely aggravated by the habit many self-styled

“decisive managers” have in further suppressing their limited perception by

searching for simplifications such as “the bottom line,” “the long pole in the

tent” or “getting the right angle” in attempting to make complex

descriptions more comprehensible to them. Typically, when the

dimensionality of the model overwhelms that of the decision maker, and he

sees results which appear to be anti-intuitive, he will tend to distrust these

results as the product of software bugs or other errors. Thus, major

opportunities to learn from the enhanced power of modeling are lost because

the operation of the computer becomes more and more opaque to the

decision maker as the dimensionality increases.

As an aside, we humans also have problems with numbers: we cannot

perceive 29 in the same way we perceive 5. The raw arithmetic perception

of the average person is “the magic number seven, plus or minus two,”

according to the cognitive scientist George Miller. However, after a lifetime

of dependable experience with arithmetic algorithms, we have the illusion

that we can understand and manage entities such as 29, or even

29,000,000,029.

The other fundamental problem was previously referred to as the “well-

posed” problem in mathematics. That is, when a mathematical model is

established, is it internally consistent? When computational requests are

desired based on this model, are they allowable? If the answer to either

question is “no,” then we have a situation which is not “well posed” and we

can expect nonsensical results or jammed up attempts to program. This

problem is made worse by the fact that in most digital computer programs,

models are built with a unidirectional computational flow that was

anticipated by the programmers, but is not necessarily responsive to the

needs of the decision makers. It was a source of great irritation to this author

to be told many times over his career that a computational request was

“impossible” because the model was programmed with another

computational flow in mind. However, when the reprogramming was done

in an attempt to be more responsive, more fundamental problems frequently

arose.

An example of these problems will be useful at this point. The example

given in the next section was chosen to be as simple as possible, but still

indicating aspects of the well posed problem that can arise even without our

entering a dimension so high that our perceptions are boggled.

 Constraint theory

4

1.2 AN EXAMPLE OF LOW DIMENSION

A decision-making manager was authorized to initiate the preliminary

design of a new system development by his board of directors. In the true

spirit of systems engineering, he realized the importance of making the best

decisions as early in the system development process as possible.

Accordingly, he gathered a team of the best specialists available, along with

a systems analyst to help organize the math model that he hoped would

guide him to strategic systems tradeoffs and decisions.

The chief systems engineer stressed that, in order for an “optimum

design” to exist, it was necessary to define a total systems optimization

criterion, T:

T = PE/C (1)

where:

P was the political index of acceptability by the board of directors,

E was the system effectiveness, and

C was the life cycle cost of the system.

The operational chief, expressing a weariness with the overly aggressive

use of new and unproved technology on most of his previous systems,

wanted to stress that most of the total system cost should be applied to

operations and support, not new systems development. Thus, he contributed

this limitation:

D = k1C, where k1=0.3 (2)

where D, the development cost, was to be limited to 30% of the total cost.

The operations and support specialist, attempting to predict the level of

cost after production and delivery were complete, provided:

S = X + 0.5D (3)

where:

S is the total support cost

X is the cost of ops and support if there were no new technology

D is the development cost for the system, including new technology.

The systems costing and estimating specialist contributed the obvious:

1. Motivations

5

C = D + S (4)

taking care that all ambiguities between development, operations and

support costs were clearly defined and resolved.

The reliability, maintainability and availability specialist provided:

S = K2E/(1-A) (5)

where:

K2 is a constant,

A is the probability that the system is ready when called upon.

Finally, the operations analyst provided this definition of effectiveness:

E = MA(D/Dmax)
1/2

(6)

where:

M is the mission success probability, given the equipment is available

D is the amount spent on development

Dmax is the budget requested by the developers

All these inputs from the specialists were reviewed for reasonableness by

the systems analyst and integrated into the “model” shown in Table 1-1.

Table 1-1. The Mathematical Model

1) T = PE/C
2) D = k1C where k1 = 0.3
3) S = x + 0.5D
4) C = D + S
5) S = k2E/(1-A)
6) E = MA(D/Dmax)1/2

where:
T = Top-level systems criterion
P = Political index of acceptability
C = Life cycle cost of a system
D = Development costs of system
S = Support and operations cost
E = Effectiveness of system
M = Mission success probability (working)
A = Availability of system

 Constraint theory

6

“There appear to be no internal inconsistencies,” reported the analyst to

the manager. “Indeed, this model is enormously simpler than any I have

ever dealt with for years.”

The manager, who claimed many years of systems engineering

experience, observed, “I see the model is imbedded in an eight-dimensional

space and is constrained by six equations. Therefore, there should be two

“degrees of freedom.” Since I’m most concerned with the total system

optimization criterion, please compute plots of T = f7(S,P) for me.”

“Sorry, said the analyst, that is not an allowable computation on this

model. Although the total model seems to have two degrees of freedom, that

freedom does not exist uniformly throughout all parts of the model. In

particular, the submodel composed of relations 2, 3 and 4 is concerned only

with the variables C, D and S. Therefore, in the three-dimensional subspace

of CDS, we have three equations and three unknowns; thus there are no

degrees of freedom, and these variables are constrained to a point or a set of

points. Since it is such a constrained variable, S obviously cannot act as an

independent variable for the computational request, T = f7(S,P).”

The manager did not like the word, “obviously”. “There must be

something wrong with the model,” he asserted. The specialists got huffy.

The analyst assured the manager, “There are no inconsistencies or

internal contradictions in this model. Once we’ve agreed to accept some

inaccuracy due to simplification, all the equations are ‘correct’ and perfectly

valid mathematically. Each of the relations referring to CDS space was

contributed by a separate specialist. Because of this interaction between

three disciplines, C, D and S are determined and can no longer be considered

as variables. Any computational request which includes C, D or S as an

independent variable must be considered unallowable. Your request was not

mathematically well-posed.”

“All right,” conceded the manager, “then let me see T = f8(M,A).”

“Sorry again,” said the analyst, “that request is also not allowable.

Consider the relations 5 and 6 which are concerned with variables S, A, E, D

and M. As we’ve just discussed, S and D are held to constant values because

of the internal constraint applied from another part of the model. By

applying M and A as independent variables, we are applying external

constraint to the SAEDM space. Thus, we have only one variable, E, which

is neither internally or externally constrained, and which must conform to

the two equations, 5 and 6. Having two equations with only one unknown is

a clear case of local overconstraint. This computational request is also not

well posed.”

The manager sighed, “Then what computations are allowable of the

form, T = f(p,q)?”

1. Motivations

7

The analyst replied, “only these three: T = f9(E,P), T = f10(M,P) and T =

f11(A,P). All other computations of the form T = f(p,q) either overconstrain

or underconstrain some part of the model.”

These computations were plotted and given to the manager, along with

the constant values for C, D and S. After studying these results, the manager

said, “OK, next I’d like to see some tradeoff curves. Please show me the

tradeoff between M and P, everything else being equal.”

“By ‘everything else being equal’ do you mean: ‘hold all other variables

at constant values?’” asked the analyst.

“Yes, I suppose so,” responded the manager, fearing the worst.

“In that case the desired tradeoff is not allowable,” said the analyst.

“Once we agree that C can no longer be considered as a variable, E is the

only variable that connects the submodel containing M with the submodel

containing P. If E is held to a constant value as you want, then the two

submodels are essentially disconnected and the M vs. P tradeoff cannot be

computed.”

“What tradeoffs would be allowable?”

“If we hold T only at a constant value, then M vs. P, A vs. P and E vs. P

are allowable computations.”

After all the allowable computations were performed and examined, the

manager asked, “How were you able to come to your conclusions on the

various computational allowabilities so rapidly? Do you have a method that

provides you special insight?”

The analyst showed the manager Figure 1-1. “Fundamentally, I attempt

to get a right-brain view of the topology of the model. Look at relation 5 for

example. In Figure 1-1a, I represent the relation by a square and show its

three relevant variables S,E,A, -- represented by circles -- connected to it.

Note that there are no arrowheads on these connections, since we don’t know

in advance what the computational path will be. In Figure 1-1b, the

arrowheads indicate that S can be computed if A and E are known inputs.

Similarly, Figures 1-1c and 1-1d show the computational flow directions for

the computations of A and E respectively.”

“Now, let’s expand our perspective to include relation 6 and its relevant

variables, A,E,M and D. Looking at Figure 1-2, we see that variables A and

E are common to both relations 5 and 6; they do not have to be repeated.

Note that the topology has developed a little circuit.”

“Continuing in this manner, we can include the entire model, shown in

Figure 1-3. This structure is called a bipartite graph which provides a right-

brained view of the topological structure of the model of Table 1-1. It’s

really a metamodel since it does not contain the actual equations of the

original model -- just the structural information necessary to determine

internal consistency and computational allowability. As in all bipartite

 Constraint theory

8

graphs, there are two distinct types of junctions: squares represent the

relations, and circles represent the variables. The arcs, or “graph edges”

connect each relation to the variables that are relevant to it. The “degree,” d,

of each junction is defined as the number of edges which intersect it.”

Figure 1-1. A right-brain view of relation 5, introducing the concept of representing relations

by squares and variables by circles, as well as demonstrating that computation can flow

through the relations in many directions.

“This bipartite graph can be considered as a network for information

flow. The squares are essentially multidirectional function generators -- or

algorithmic processors -- such that any output can be generated if all the

other edges provide input. The circles are essentially scalar measurements

of the value of the variable that they represent.”

“The above use of the bipartite graph for the representation of a math

model can be easily extended to the representation of a computational

request. In the general format of a computational request, one specifies a

dependent variable (the output) and a set of independent variables and

variables held constant (the input). These input variables essentially have

constraint applied to them -- in addition to the constraint applied to them by

1. Motivations

9

their relevant relations -- and thus additional squares are appended to the

bipartite graph.

Figure 1-2. The perspective is expanded to include both relations 5 and 6, which share

variables A and E.

Figure 1-3. The Bipartite Graph: A Metamodel displaying consistency and computability.

For example, assume that it is desired to have variables M and P be

independent variables and variable A be held constant. As is shown in

Figure 1-4, the squares identified with “I” are appended to M and P, while

 Constraint theory

10

the square identified with “C” is appended to variable A. In summary, the

squares representing relations of the model imply intrinsic constraint, while

the squares representing inputs to a computational request apply extrinsic

constraint. To emphasize this difference, the intrinsic constraint squares

have a single border while the extrinsic constraint squares have a double

border.”

Figure 1-4.

“Before a computational request is made, the edges of a bipartite graph

model have no directionality. Once the request is made, the input variables

1. Motivations

11

now apply constraint to their neighbors and the edges take on a directionality

which is determined by the request. Essentially, the computation or

constraint “flows” across the graph.”

“For treelike graphs, the rules to map the sequential propagation of

information -- or computation, or constraint -- are simple in the extreme: for

d edges intersecting a square, information will propagate if there are (d-1)

inputs and one output; for d edges intersecting a circle, information will

propagate if there is one input and (d-1) outputs.” (See Figures 1-1 and 1-4.)

Note that a square with but a single arc intersecting it will automatically

transmit constraint to the circle it is connected with, since in this case, d=1

and (d-1)=0, thereby requiring no inputs to generate its output.

“For graphs which contain circuits, mapping propagation is a little more

complex. Once we have gone as far as we can with the sequential rules

above, we may require the rule of simultaneous propagation in the vicinity of

a circuit: if a connected subgraph exists which contains an equal number of

unpropagated squares and circles, then all its variables may be computed as

if they were within a set of simultaneous equations.”

“Now I can show you how easy it was to determine the computability of

your computational requests. Looking at Figure 1-5, we can easily see that

relations 2, 3 and 4 form a submodel with an equal number of squares and

circles. This denotes three simultaneous equations covering three unknown

variables and we should expect to be able to solve for the three variables,

converting them from unknown variables to fixed parameters. Thus, your

request, T = f7(S,P) is unallowable since it assumes S is variable rather than

a fixed parameter. For the same reason, C and D cannot be independent

variables either. This type of constraint imposed on the model is called

intrinsic because it existed even before you made any computational

request.”

“Now look at Figure 1-6, which shows constraint propagating from left to

right along variables C, D and S for the above explained reason. When you

requested the computation T = f8(M,A) you established the two independent

variables as a source of extrinsic constraint which propagates into the model

and hopefully gives us a computation of T. Let’s see what happens when we

employ the sequential propagation rules for constraint flow. Since M and A

are extrinsic sources of constraint and D is an intrinsic source, we can satisfy

the (d-1) inputs and one output rule for equation 6, thus producing a

computation for variable E. With A as an extrinsic source and S as an

intrinsic source, we can satisfy the (d-1) inputs and one output rule for

equation 5, thus producing another computation for variable E. This is a

case of local overconstraint, making the requested computation

unallowable.”

 Constraint theory

12

Figure 1-5. T = f7(S,P) is not allowable.

S cannot be an independent variable.

“Don’t get discouraged, allowable computations exist also. Figure 1-7

displays the computational paths to compute T = f9(E,P). Note how the

extrinsic constraint flows from E and P combine with the intrinsic flow from

C to satisfy the (d-1) inputs and one output rule to equation 1, resulting in

the computation of T. Also note that the entire model was not necessary for

this computation, as equations 5 and 6 were irrelevant to it.”

1. Motivations

13

Figure 1-6. T = f8(M,A) is not allowable

because of overconstraint on E.

“Figure 1-8 shows a case where both sequential and simultaneous

computational flow is used to satisfy the request, T = f10(M,P). As originally

constructed, the submodel comprised of the equations 5 and 6, together with

their relevant variables S,A,E,D and M had two equations and four variables

-- ‘two degrees of freedom’ as you put it. Now, with the application of

intrinsic constraint from S and D and extrinsic constraint from M, the extra

degrees of freedom collapse to zero and we are left with two equations and

two variables for this submodel. We can expect to solve these two

simultaneous equations in two unknowns to obtain both A and E. Now

applying the intrinsic constraint flow from C, the simultaneous constraint

flow from E and the extrinsic constraint flow from P to equation 1, we can

compute T. Thus, this request is allowable. In this case, the entire model

was involved with the computation.”

“Figure 1-9 shows the computational paths for the allowable request T =

f11(A,P). The intrinsic input from S with the extrinsic input from A permit

equation 5 to compute E which, using the 1 in, (d-1) out rule, propagates to

both equations 6 and 1. This input from E plus the intrinsic input from C

and the extrinsic input from P permits 1 to compute T as requested. By the

way, this same bipartite graph shows that M = f12(A) is also allowable.”

 Constraint theory

14

Figure 1-7. T = f9(E,P) is allowable

The constraint flow rules work OK.

 “Now the term, ‘tradeoffs, with everything else held equal’ is fraught

with ambiguity and most often used with insufficient rigor. Figure 1-10

displays how holding E at some constant value effectively decouples M and

P into different, non-communicating subgraphs, rendering this tradeoff

request unallowable.

If any combination of C, D and S were to be held constant, two types of

problem emerge. First of all, the value to which they were held constant

might not agree with the values computed from the 2, 3 and 4 simultaneous

equations. Even if they did agree, then propagating constraint across the

graph would yield an underconstraint at equation 1 -- there would be an

insufficient number of inputs to provide the desired computation of P. The

same underconstraint situation occurs if the variable held constant is A. In

fact, the only variable that can be held constant in order to provide the M vs

P tradeoff is T.”

1. Motivations

15

Figure 1-8. T = f10(M,P) is allowable

A new BNS is formed; then the flow is OK.

Figure 1-9. T = f11(A,P) is allowable

M = f12(A) is also allowable.

 Constraint theory

16

Figure 1-10. M = f13(P) “Tradeoff” is not allowable

holding E constant decouples M and P is allowable.

1.3 THE MANAGER AND ANALYST CONTINUE

THEIR DIALOGUE

The manager absorbed all these inputs soberly and after reviewing the

results of his requested computations as well as others which were allowable

on the original model, he complained, “I certainly can’t argue with your

mathematical rigor. But I’m still disappointed that I didn’t get more insight

out of this model for my preliminary design phase -- I expected more,

somehow. It seems that whether a computation is allowable or not is like the

flip of a coin.”

“It’s worse than a coin flip; much worse. You have just observed a very

common and generally unappreciated feature of most math models,” the

analyst responded. “Indeed, the vast majority of all possible computational

requests on almost all models are unallowable. Some of the author’s

graduate students performed an exhaustive analysis of the likelihood of

computational allowability on 6- and 8-dimensional connected models of a

variety of topologies. The results are presented in detail in Appendix A, but

the general allowability likelihoods were surprisingly low. Of the 150

1. Motivations

17

computational requests made on the 6-dimensional model, less than 15%

were allowable. Of the 1078 computational requests made on the 8-

dimensional model, less than 6% were allowable. As the dimensionality of

the model increases to dozens or hundreds of variables to address modern

complex systems, then we can expect the allowability likelihood to diminish

even further. Needless to say, this is far worse than a coin flip.”

“But don’t lose hope, you can still ‘negotiate’ a more useful model with

your team of specialists -- after all, they have an even more limited systems

view than you about the structure of the model and know even less about

your intended use of it.”

“For example, let’s examine the three relations, 2, 3 and 4, that caused

the inadvertent source of intrinsic constraint. Equation 4 is merely a

definition between three types of cost -- this certainly seems OK. Equation 3

is the result of experience of how support costs increase with new

technology developments -- this is OK based on the experience of many past

systems and assumes that there will be no investment in the development

phase to reduce supportability costs. But now look at equation 2; it is not a

representation of a definition or an experienced relationship, it is a policy

statement by a person who is attempting to limit development costs so he can

spend more on operations and support. If, instead of demanding that K1 =

0.3, he permitted K1 to merely be another variable in the model, the model

dimensionality would increase to nine, and more importantly, the intrinsic

source of constraint due to equations 2, 3 and 4 would be relieved (see

Figure 1-11). By this reasonable negotiation, we increase the candidates for

independent variables to include C, D, S and also K1. In fact, the operational

chief who furnished equation 2 in the first place can now run studies to

determine what value of K1 will maximize the systems level criterion, T,

rather than arbitrarily fixing it at 0.3.”

“Very interesting,” admitted the manager, “I can see a constructive

integration between left- and right-brain views. It would be extremely

difficult to initiate negotiations of this type without the visibility provided by

your bipartite graphs.

I’m surprised I haven’t seen this methodology before. But most real

world problems are vastly more complex than this example, are they not?

Wouldn’t analysts be driven crazy if they tried to work with snake charts that

were many square meters in area?”

“You’re absolutely correct,” agreed the analyst. “Meaningful models

quickly get large and even rigorous graphs become like a bundle of snakes,

as you put it, and not really amenable to the analysis by inspection shown in

the example. Figure 1-12 displays the flow graph for a specific

computational request on a model that’s about  times larger than the

example. The author actually was able to do consistency and allowability

 Constraint theory

18

analysis on this size model without using computer aids. This was possible

because the rules, and later, the theorems were developed using

comprehensible models of low dimension, and then extending them

rigorously to higher dimensionality. For example, the model depicted in

Figure 1-13 -- again about another  times larger than Figure 1-12 -- would

undoubtedly boggle the mind of even the most focused analyst unless

computer aids were available. In order to communicate with the computer,

a new construct -- called the ‘constraint matrix’, which has all the

information inherent in the bipartite graph -- will be employed.”

Figure 1-11. Changing K1 from a constant to a variable permits C, D, S, and K1 to act as

independent variables in computations.

1. Motivations

19

Figure 1-12. A sequential computational flow in a model about  times larger than the

example.

“Is there a name to this process? How difficult would it be to become

proficient in this technique? What would the mathematical prerequisites

be?” asked the manager.

“The name of the process is ‘Constraint Theory’. It is based on the

author’s PhD dissertation [2] and subsequent published papers [3]. The only

mathematical prerequisites are the simplest 5% of set theory and graph

theory. Just read this book; it is written for practical engineers, not

professors or journal editors.”

 Constraint theory

20

Figure 1-13. A model about another  times larger certainly invites computer assistance.

1.4 PRELIMINARY CONCLUSIONS

Today’s dynamic world of systems development is virtually in an

explosion of complexity and multidimensionality. Computer science

represents our best hope of controlling the complex multidimensionality;

however a major barrier to its trustworthy use is the “well posed problem.”

Constraint Theory addresses the two fundamental issues of the well-

posed problem:

(a) Is a mathematical model internally consistent?

(b) Are computational requests made of the model allowable?

Even with simple 6- or 8-dimensional models, the vast majority of

computational requests are not allowable from a well-posed standpoint.

Constraint Theory also provides decision-making managers greater

visibility into the assumptions and structure of the contributing relations

underlying models and a basis for negotiating alterations to the model in

order to attain greater benefit through desired computations.

Constraint Theory’s only mathematical prerequisites are elementary set

theory and graph theory.

1. Motivations

21

Compared to the present practice of digital simulation which tightly

integrates the mathematical model with rigid directions of algorithmic flow,

Constraint Theory distinguishes the mathematical model from computational

flow and permits multidirectional flow at the request of the analysts.

The bipartite graph and its companion, the constraint matrix, provide

insightful topological metamodels to both the model and its computations.

They provide a viewpoint to establish a rigorous mathematical extension of

the methodology to any number of dimensions.

 Constraint theory

22

1.5 A LITTLE WINDOW INTO FUTURE

CHAPTERS1

For those systems engineers and managers who wish to gain

MULTIDIMENSIONAL INSIGHT

almost comparable to their perceived understanding of

NUMBER AND ARITHMETIC

and learn the activities of

NORBERT WIENER BEFORE CYBERNETICS

and

CLAUDE SHANNON BEFORE INFORMATION THEORY

and ponder the deep nature of

RELATIONS

with their many diverse characterizations including

BIPARTITE GRAPHS AND OTHER RIGHT BRAIN METAMODELS

which assist in solving the venerable

WELL-POSED PROBLEM

by detecting and correcting the dual villains

OVERCONSTRAINT AND UNDERCONSTRAINT

and ferreting out the chief culprit of inadvertent constraint

THE BASIC NODAL SQUARE

from its hiding place deep within

HOPELESSLY TANGLED CIRCUIT CLUSTERS

by employing easy graph theoretic measurements of

CIRCUIT RANK

and

CONSTRAINT POTENTIAL

which locate these kernels of constraint within medium-sized models

TRILLIONS OF TIMES

more rapidly than would a random search or the use of Hall’s 1914

theorem,

THEN DO AS THE ANALYST SUGGESTS:
READ THE BOOK!

1 Inspired by Edgar Palmer’s delightful title page for his book, Graphical

Evolution, John Wiley and Sons, New York, 1985

1. Motivations

23

1.6 PROBLEMS FOR THE CURIOUS READER

1. Provide three examples from your knowledge or experience of small

models being developed and then integrated into total system

models.

2. Provide four examples of the utility of computers in the design,

production or operation of complex systems, where humans would

find it difficult or impossible to handle.

3. Provide five examples of problems associated with computers

applied to complex systems.

4. Regarding the mathematical model depicted in Figure 1-3, which of

the following computational requests are allowable and which are

not allowable?

For the allowable requests, draw the directed bipartite graph which

depicts the computational flow. For the unallowable requests,

discuss the reason(s) for the unallowability.

Computational Requests:

M=f(A), M=F(E), E=f(A,M), P=f(T,E), P=f(T,A)

5. For those computational requests which you deemed to be allowable,

switch the dependent variable with one of the independent variables

and check again for allowability. Does this suggest a possible

generalization?

Chapter 2 THE FOUR-FOLD WAY

How to Perceive Complex Mathematical Models and Well-Posed

Problems

2.1 PROLOGUE: THE MANAGER AND ANALYST

DISCUSS THE ORIGINS OF

MULTIDIMENSIONAL MODELS AND WELL-

POSEDNESS

“Since complexity has grown so enormously in modern times,” the

manager commented, “I presume that the motivations to develop techniques

to manage it are relatively recent.”

“On the contrary,” replied the analyst, “many of the concepts and

examples of problem recognition are quite old -- ancient even.”

Consider the old Indian story of the blind men trying to “understand” an

elephant. Depending on what is touched -- the leg, ear, tail, trunk, or tusk --

the unknown object takes on the attributes of a tree, a leaf, a rope, a snake or

a spear. Thus, touching an aspect of a complex object is far removed from

understanding the total integrated concept of “elephant.”

A more recent story -- but still almost 2000 years old -- comes from the

Talmud [5]. According to a commentary on the book of Genesis, on the day

that the Lord created Man, He took truth and hurled it to the ground,

smashing it into thousands of jagged pieces. From then on, truth was

dispersed, splintered into fragments like a jigsaw puzzle. While a person

might find a piece, it held little meaning until he joined with others who had

painstakingly gained different pieces of the puzzle. Only then, slowly and

 Constraint theory

26

deliberately, could they try to fit their pieces of Truth together -- to make

some sense of things.

Mankind’s yearning to understand the world over the eons has been aided

by the development of mathematical models. Groups of researchers,

sometimes spanning centuries contribute their little fragments of data or

understanding and eventually a general theory emerges. In many cases, the

consequences of the new theory are unexpected by the original contributors,

but such is the trust given to mathematics, the unexpected, nonintuitive

results are accepted given they are mathematically sound. Examples:

 In the 16th century, Tycho Brahe organized and extended the

astronomical observations of Copernicus and others into the world’s

finest set of data on stellar and planetary objects. Johann Kepler

took this data and formulated his famous three laws of planetary

motion. Despite his disappointment that planetary orbits were

elliptical -- rather than the circles the Greeks maintained were

necessary for “celestial perfection” -- he convinced himself and the

scientific world that the ellipse was the correct mathematical form

for all the orbits in Tycho’s data base.

 Decades later, Isaac Newton, with his greater mathematical

understanding, was able to generalize Kepler’s laws into his law of

universal gravitation -- a gigantic intellectual feat which unified the

laws of the heavens and earth.

 Centuries later, Albert Einstein provided a refinement of Newton’s

theory of universal gravitation with his general theory of relativity.

Alexander Friedmann solved Einstein’s equations and concluded

that the universe began in a monstrous big bang. This was so

against Einstein’s instincts that he added a cosmological constant to

his equations of relativity to remove the possibility of an expanding

universe or the big bang. However, the rationality of mathematics,

as well as new data by Hubble and others have established

Friedmann correct and Einstein has referred to the cosmological

constant as his greatest blunder.

So in Man’s quest to understand, mathematical modeling has taken an

increasingly central role in building theories, and indeed in the scientific

method itself. The jagged shards of data, incomplete observations and

subdimensional theories are pieced together rationally -- often resulting in

unexpected conclusions and a deeper view of the world. With the advent of

modern computer technology, this central importance promises to increase

far more.

“You certainly won’t get arguments from most practitioners of science

and technology about the importance of computers,” remarked the manager,

2. The Four-Fold Way

27

attempting to be agreeable. “What you have said would be obvious to most

observers.”

“What is not obvious is that there are many barriers to the future efficient

use of computers in the modeling of complex system,” rebutted the analyst.

“I knew you’d say that,” said the manager, remembering the example of

Chapter 1. “What are these barriers?”

“First of all,” began the analyst, “with all the increased capability and

flexibility that the digital computer offers over the analog, there comes a

subtle but pervasive disadvantage: the model and the computational requests

placed on it are inextricably intertwined. In almost all cases, the model is

programmed to execute a specific computational flow, and when asked to

alter the computation or switch input and output variables on the same

model, the programmers tend to tell the managers, “can’t be done” or “too

much trouble, or “can’t you make do with all that I’ve given you?”

“Amen,” agreed the manager, “I’ve been told that many a time. The

programmers love to overwhelm you with data to show off their powerful

computation. Their love of being responsive to your deep needs to

understand what the model is teaching us is unfortunately much less.”

Second, until early this century, the general concept of a relation has been

quite fuzzy and philosophical. Then in 1913, Norbert Wiener [6], before he

became the father of cybernetics, suggested that the definition of a relation

be imbedded within set theory -- one of the foundations of all mathematics.

This served to add needed clarity and rigor to the concept of “relation.”

Third, there was a general expectation that once a model was developed,

there were no limitations on what computations could be asked of it. Which

questions are “well posed” and which are not? In 1942, Claude Shannon [7],

before he became the father of information theory, studied these issues on

the recently developed mechanical differential analyzer -- the most powerful

computer of its time, analog or digital. He discovered that some of the

variables desired to be dependant, or output variables -- based on the rotation

of a shaft assigned to that variable -- were “free running”, providing no

useful results. In other cases the entire network of rotating shafts, gear trains

and integrators would just “lock up” --again providing no useful results.

These instances of “free running” and “lockup” are directly related to the

concepts of under constraint and over constraint, which we will discuss later.

Fourth, as was mentioned in Chapter 1, there is a vast dimensionality gap

between the cognitive capability of man and machine. Our challenge is to

make the best partnerships between these cognitive entities. As George

Gamow [8] related in his charming book, “One, Two, Three, Infinity,” it was

possible to survive with very limited numerical perceptions during our

primitive beginnings, but the advent of mathematics, starting with

 Constraint theory

28

arithmetic, enormously enriched our lives and ability to understand and

control the world.

“I can see the issues are not as new as I thought,” admitted the manager.

“Speaking of all the fathers, you mentioned Gamow -- wasn’t he also a

student of Alexander Friedmann, the father of the big bang theory as well as

the father of George Friedman, this book’s author?”

“Almost correct! You continue to amaze me, I should develop more

respect for you,” beamed the analyst. “Yes, George Friedman’s father was

Alexander Friedmann, but he was Friedmann the tailor, not Friedmann the

cosmologist. But let’s proceed to some substance.”

“OK,” challenged the manager. “I’m ready to enter the mathematical

world you tell me that is necessary to bring order to this confusion and

ambiguity. Let’s see if the work will prove to be a worthwhile expenditure

of intellectual energy.”

“Fair enough,” agreed the analyst. “In the remainder of this chapter, I

want to introduce you to the very simplest foundations of set theory and

graph theory, which will define for us with rigor and clarity the formerly

vague concepts of relation, well-posed, consistent, allowable computation,

overconstraint and underconstraint. I believe it will be worth your effort.”

We will begin our exploration of the foundations of constraint theory by

presenting four interrelated views of the mathematical model: set theoretic,

families of submodels, bipartite graph, and constraint matrix. The first and

second are complete and contain all the model’s detail. The third and fourth

are metamodels and contain only those abstractions which illuminate the

model’s structure as it relates to consistency and computability.

2.2 THE FIRST VIEW: SET THEORETIC

Definition 1: A set is a collection of elements. A subset is a portion of

this collection. The number of elements may be finite, such as the planets of

the solar system, or infinite, such as the points on a line. A set with no

elements at all is the null set. (Figure 2-1)

Definition 2: A variable is an abstraction of one of the model’s

characteristics which the analyst considers essential. Associated with each

variable is an allowable set of values. (Figure 2-2)

The set of variables which define the model can have enormous

flexibility. The variables can be continuous and quantitative, such as force,

length, or temperature; they can be discrete, such as the variables in Boolean

Algebra, or the solutions of Diophantine equations; they can be qualitative,

such as hot, rich, salty or sick; or combinations of these.

2. The Four-Fold Way

29

Figure 2-1. It all begins with the simple concept of sets, subsets, and the null set.

Figure 2-2. The sets of variables and their allowable values have enormous flexibility.

Definition 3: The model hyperspace is that multidimensional coordinate

system formed by all the variables as axes, each of which is orthogonal to all

the others. (Figure 2-3) This is simply a generalization of Descartes’

 Constraint theory

30

unification of geometry and algebra. We will frequently refer to these axes

as Cartesian coordinates.

Figure 2-3. The Model Hyperspace formed by the orthogonal axes of the variables is a useful

abstraction, although in general it is impossible to be perceived.

Definition 4: The product set of a set of variables is the set containing all

possible combinations of the allowable values of all the variables. In the

case where all the variables are continuous over an infinite range, the

product set is merely every point within the hyperspace defined by the set of

variables. (Figure 2-4)

2. The Four-Fold Way

31

Figure 2-4. The Product Set contains all possible combinations of the allowable sets of the

variables' values.

Definition 5: As suggested by Wiener and amplified by Bourbaki [9] and

Ashby [10], a relation between a set of variables is defined as that subset

within the product set of the variables which satisfies that relation. (Figure

2-5) This relation can be between any number of variables and is not

restricted to the binary relations of “relation theory.”

The relations can also have enormous flexibility. They can be linear or

nonlinear, differential equation, partial differential equations, integral-

differential equations, logical equations, binary, ternary, etc, deterministic or

probabilistic, inequality relations, or any combination of these. In many

cases the relations can be represented by data or “truth tables.”

Definition 6: Since a relation reduces the size of the original product set

to a smaller, relation set, the relation can be said to constrain or apply a

constraint to the original product set. (Figure 2-6)

Now that we have embedded the concept of mathematical models within

set theory, we will need these four set theoretic operations for further

developments: (see definitions 7 and 8; Figure 2-7)

 Constraint theory

32

Figure 2-5. Wiener suggested that a "relation" between variables can be defined as the subset

within the product set of these variables which satisfies it. This not only provides rigor, but

permits a tremendous variety of relation types.

Figure 2-6. Relations, as well as variables held constant, constrain the product set into a much

smaller subset.

2. The Four-Fold Way

33

Figure 2-7. Only four operations from set theory are employed for Constraint Theory.

Definitions 7: The union of sets A and B is the set of all points which

are either in set A or in set B or both. Symbolically:

x ⊂ A∪B if: x ⊂ A or x ⊂ B

 Constraint theory

34

The intersection of sets A and B is the set of all points which are in

both A and B. Symbolically:

x ⊂ A∩B if: x ⊂ A and x ⊂ B

Definitions 8: The projection of set A onto dimension x is the set of

points within set A with all coordinates except x suppressed. For example, if

set A is the point (2,4) in the xy plane, then Prx (2,4) = 2 on the x axis only.

Projection is a dimension reducing operation. Symbolically:

If A = (2,4) in xy-space (point)

PrxA = (x=2) in x-space (point)

PryA = (y=4) in y-space (point)

The extension of set A into dimension y is the set of all points within set

A plus all possible values of the dimension y. For example, if set A is the

point (2,4) in the xy plane, then Exy(2,4) is the line x=2 where y varies over

all its possible values. Extension is a dimension increasing operation.

Symbolically:

ExyA = (x=2) in xy-space (line)

ExzA = (x=2)∩(y=4) in xyz-space (line)

Definition 9: y is a relevant variable with respect to relation  in xyz

space means that there exist lines in xyz space parallel to the y axis that are

neither entirely within nor entirely outside of the relation set. Thus y has an

effect on , or equivalently, the relation  constrains y. Symbolically:

If: Exy(PrxzAthen y is relevant to 

Similarly, y is irrelevant with respect to relation  if:

Exy(PrxzA) = A(Fig 2.8)

2. The Four-Fold Way

35

2.3 THE SECOND VIEW: FAMILY OF

SUBMODELS

The set theoretic definition of relation was chosen to provide the firmest

and broadest mathematical foundation for the work to follow.

Unfortunately, it cannot also be claimed that this viewpoint is a practical

way to describe the relation. There are some occasions, such as tabulated or

plotted functions, when it is necessary to list every point within the relation

subset exhaustively. In these cases, the relation subset is merely the union of

all the listed points within the hyperspace of the model. However, in the

vast majority of mathematical models, far more efficient means are used to

define the usually infinite number of points comprising the relation subset.

These efficient means almost invariably involve the concept of

describing the total model as the intersection or union (or both) of a set of

submodels or algorithms. (Figure 2-9) This is necessary for at least two

reasons: First, and more obvious, a practical way of specifying infinite sets

is required. Second, and deeper, model builders cannot conceive of the

entire model with their limited perceptual dimensionality and thus attempt to

construct higher dimensional models by aggregating in some fashion a series

of lower dimensional submodels. The rules of aggregation employ the

union, intersection, projection and extension operators defined previously.

Frequently, a function is specified in a piecewise fashion; for example:

x = 0 when t<0

x = t
2
 when t>0

In cases like this, the meaning is that the contribution of these two sets to

the total model is the union of the sets.

More frequently, a collection of “simultaneous equations” attempt to

define the model; for example:

x + y + z = 13

x - y= 8

In cases like this, the meaning is that the contribution of these two sets to

the total model is the intersection of the sets.

In general, the dimensionality of the total model is far greater than any of

the contributing submodels. Thus, the contributing submodels specify only a

subset of the total model and, in order for them to be able to intersect in the

total dimensional space, they must be extended into all the unspecified

directions. For example, let the total model space be xyz and let the relation

subset for f1(x,y)=0 be A1 and the relation subset for f2(x,z)=0 be A2. Thus,

 Constraint theory

36

before these two relations intersect, A1 must be extended in the missing z

direction, and A2 must be extended in the missing y direction. Defining Aas

the total model relation, then:

Figure 2-8. Relevancy of a variable with respect to a relation can be defined in terms of the

projection and extension operations.

AExz(A1) ∩ Exy (A2)

Now, once the model is constructed in the above fashion, an analyst

wishes to have a subdimensional “view” -- or computational request --of this

multidimensional relation. In order for him to view the relation -- as AV --

with respect to the xy plane, he must ask for a projection of A onto the xy

plane. (Figure 2-10). Symbolically:

AV = Prxy(A

2. The Four-Fold Way

37

Figure 2-9. Total model relations are generated by families of submodels which are combined

by the union, intersection, extension and projection operations.

If the analyst wishes to impose additional restrictions on his view, or

computation, prior to the projection, he may hold any number of variables at

a constant value. In these cases, the relations corresponding to these

variables held constant intersect the total model relation prior to the

application of the projection operation.

 Constraint theory

38

Figure 2-10. After each generating relation is developed, it is extended into the full

hyperdimensional space of the total model, forming the relation AΣ, which in turn is projected

onto the subspace of the computational request, where it can be "viewed" by managers,

analysts and others interested in learning from the model.

2.4 THE THIRD VIEW: THE BIPARTITE GRAPH

Although there exist strong implications of topological structure in

mathematical models and their computations, neither of the two views

described above provides topological insight. In order to provide this

additional insight -- as well as allow a right-brain perspective to aid the

dominantly left-brain views already presented -- graph theory will be

applied.

2. The Four-Fold Way

39

Definitions 10: A graph is a topological network of points, called

junctions, or vertexes, and lines connecting some of them, called arcs, or

edges. A bipartite graph is a special graph having two disjoint sets of

vertexes, {K} and {N}, such that any edge is only allowed to connect a vertex

in {K} to a vertex in {N}.

Definitions 11: A model graph, is a bipartite graph with one set of

vertexes, called nodes, corresponding to the model’s relations and the other

set of vertexes, called knots, corresponding to the model’s variables. A knot

will be connected by an edge to a node only if the corresponding variable is

relevant to the corresponding relation. As an additional visual aid, nodes

will be shown as squares and knots will be shown as circles. (Figure 2-11)

A model graph can be thought of merely as the circuit diagram of a

computer hookup of the mathematical model: the nodes are function

generators and the knots are wired connections that permit the values of the

variables to pass from one function generator to another. Thus, when the

edges indicate no direction, the bipartite graph represents a model. When

the edges indicate specific directions, then the bipartite graph represents a

computation on that model, tracking the flow of computation or constraint

across the topological structure.

2.5 THE FOURTH VIEW: THE CONSTRAINT

MATRIX

The fourth and final viewpoint of the mathematical model is introduced

primarily to provide a format amenable to computer processing. As will be

seen later, however, it also furnishes yet another mathematical perspective

from which the proof of certain theorems can most easily be made.

Definitions 12: A constraint matrix is a rectangular array of elements

that presents exactly the information inherent in a bipartite model graph, but

is a form that can be easily stored and operated upon by a computer. The

columns correspond to variables and the rows correspond to relations. An

element in the ith column and the th row will be filled if the variable i is

relevant to the relation , and empty if it is not. (Fig 2.12) Compactly

stated, the rows, columns and elements of the constraint matrix are

homomorphic to the nodes, knots and edges of the bipartite graph. In order

to indicate the direction of computational flow, the elements of the constraint

matrix can take on the values: +1 or -1.

To further emphasize the essential similarity between the bipartite graph

and the constraint matrix, Figure 2-13 shows a logical evolutionary transition

between the two representations. As was stated earlier, both the bipartite

graph and constraint matrix are “metamodels” and do not contain the full

model information inherent in the set theoretic and family of submodels

 Constraint theory

40

versions. Rather, they emphasize the structure and topology important to

model consistency and computational allowability.

2.6 MODEL CONSISTENCY AND

COMPUTATIONAL ALLOWABILITY

We are now prepared to present rigorous definitions in the area of the

“well posed problem.” Saying a problem is well posed means that the

mathematical model is consistent and the computation is allowable.

Definition 13: A mathematical model is consistent means that its

multidimensional relation set contains at least one point. Symbolically,

Athe null set

Definition 14: A computational request made on a model is allowable

means that the projection of A onto the view space of the computation

contains at least one point and in addition, each variable involved in the

computation must be relevant to this projection in the sense of definition 9.

Thus, if the projection onto the desired subspace that the analyst wants to

view has been nulled out to no points at all, then the computation, the

application of variables held constant or even the total model relation has

been overconstrained. On the other hand, if the projection has variables that

are not relevant, these variables take on all their possible values, and are

therefore underconstrained. (Figure 2-14)

2.7 THE MANAGER AND ANALYST CONTINUE

THEIR DIALOGUE

“You started off simply enough,” commented the manager. “What can

be easier than the definition of sets and their operations? Also, your

extension of Cartesian coordinates into hyperspace can be grasped by

extrapolating from what we know of one, two and three dimensional spaces.

As a teenager, I was inspired by Abbot’s Flatland [11] and Burger’s

Sphereland [12]. These extensions are interesting philosophically, but do

they really represent the real world and should they be the basis for applied

mathematics? I’ve heard professors argue that Descartes himself only was

thinking of our familiar three dimensional space, not even the four

dimensions for relativity theory, the eleven dimensions for string theory, and

certainly not the hundreds of dimensions we need for a modern mathematical

model.”

2. The Four-Fold Way

41

Figure 2-11. The bipartite graph is a metamodel of the full model which illuminates the

model's structural and computational properties.

 Constraint theory

42

Figure 2-12. The Constraint Matrix is the companion to the bipartite graph and displays

exactly the same information. It is also a metamodel which contains only that information

relating to the model's structural and computational properties.

2. The Four-Fold Way

43

Figure 2-13. Evolutionary transition from the bipartite graph to the constraint matrix.

 “What do we really know about ‘reality,’” asked the analyst, launching

into a minor tirade. “Irrational numbers were once thought to be irrational,

and still bear the label. Negative numbers were once thought to be

imaginary, but now play an essential role in every walk of science and

finance. Zero was originally thought to be completely unworthy of serious

consideration, but we would be crippled if we stuck to the awkward Roman

 Constraint theory

44

numerals. Imaginary numbers were originally considered as only interesting

abstractions, but today form the basis of several very practical integral

transforms and are essential to almost every walk of electrical engineering.

Then there are loops (which we will consider in Chapter Four). Early in

control theory, feedback loops were considered impossible, in logic, self-

referential statements were considered illogical, and in decision theory,

intransitive preferences are still considered irrational.”

“So, in light of the above, we face this philosophical question: ‘Does

hyperdimensional space have to correspond to the space-time continuum of

our universe in order to be useful for the understanding of mathematical

models? I claim the answer is ‘no’ and most mathematicians use as many

dimensions as they need. Descartes’ crucial intellectual leap was to enrich

the algebraic relations with geometric concepts; the extrapolation to any

number of dimensions should be trusted as a straightforward extension.”

“OK,” agreed the manager, feeling a little over-answered. “Your use of

the projection and extension operators was less familiar to me and I never

really thought how families of submodels contributed to the total model.

The concept that a computational request is really a projection of the total

model onto a subspace was really beyond my experience. But now I can see

the value of this construct. The projection operator provides the

dimensionally-limited human an understandable perspective of an

inconceivable multi-dimensional relation.”

“Or to further extend the lingo that managers like to use,” added the

analyst, “if you choose the right subdimensional viewspace, you get the ‘best

angle’ on a complex problem -- something you guys are always trying to

do.”

“Figure 2-14 is a good summary of most of the previous ideas. Referring

to the ancient stories at the beginning of this chapter, the blind men each

observing the elephant from different aspects form pitifully incomplete

shards of truth, generating relations which are combined into the ‘total truth.’

However, since we are hopelessly subdimensional, we cannot perceive or

understand the total truth, A. Instead, we turn it every which way and

attempt to observe it from many different angles, some of which may help us

to understand ‘more deeply.’ Disappointingly, for most of the directions we

attempt to look at the relation, we will get no more information. That is the

agony of asking questions which are not well-posed.”

“Bottom line, to use more management jargon,” summarized the analyst,

“these four views were deemed necessary by the author to understand the

underlying foundations of models, computations and well-posedness, rather

than rely on the rather opaque, algorithmic crankturning he had been taught

in all his courses in mathematics.”

2. The Four-Fold Way

45

Figure 2-14. In order for a problem to be well-posed, the mathematical model must be

consistent and the computation must be allowable. Consistency requires that the hyper-

dimensional relation not be the null set. Allowability requires that all the variables of the

requested computation be relevant to the projection of the total relation onto the

computational subspace.

 Constraint theory

46

2.8 CHAPTER SUMMARY

 Four interrelated views of a mathematical model and its

computations have been presented: set theoretic, family of

submodels, bipartite graph and constraint matrix. (Figure 2-15).

The first two are full models, containing all the detail necessary

for final construction and computation; the latter two are

metamodels, and are abstractions of the first two which

concentrate on the topological and computational features. In a

strong sense, the metamodels can be considered to provide an

overarching management perspective on consistency and

computability issues. Without this perspective, those who

attempt to build models and make computations on them will

blunder into difficulties due to either inconsistencies in the model

or unallowabililties in the computations -- in short, the traditional

well posed problems. In any case, once the “well-posedness” of

the models and computations have been analyzed and managed

by the metamodels, the full models must then be employed for

the actual computations.

 The concept of “set” has been used as frequently in this chapter

as the word “system” has been used in a book on systems

engineering. This was done deliberately because -- despite the

apparent simplicity of the concept -- it is far more precise a

concept than “system” and its applicability is wide ranging.

 The set was used to define a relation between variables. The

concept of set was also used to identify:

o the allowable values of a variable

o the possible values of a product set

o collections of variables -- which can represent

computational requests

o collections of relations -- which can represent submodels

o subsets of bipartite graph vertexes called knots

o subsets of bipartite graph vertexes called nodes

o collection of edges connecting subsets of the knots and

nodes

o constraint matrix columns; homomorphic to knots and

variables

o constraint matrix rows; homomorphic to nodes and

relations

o constraint matrix elements; homomorphic to edges and

relevancies

2. The Four-Fold Way

47



 Figure 2-15. The four representations of a mathematical model. The first two are full models

and the latter two are metamodels.

 Constraint theory

48

o power set of the knots: all definable computational

requests

o power set of the nodes: all possible submodels

 Perhaps Friedman’s greatest contribution was the recognition

that very useful metamodels of the mathematical model’s

variables, relations and relevancies are the bipartite graph’s

knots, nodes and edges and the companion matrix’s rows,

columns and elements.

 This chapter provided the foundation for a building; its

construction and use will continue in subsequent chapters.

2.9 PROBLEMS FOR THE INTERESTED STUDENT

1. Provide a real-world example of a three-dimensional product set

where one dimension is continuous, another is discrete and a third is

defined in intervals.

2. Employing detailed algebraic equations in three-dimensional space,

show an example of y being relevant to the model and another

example of y being irrelevant.

3. For a three-dimensional model, show how ∩,∪, Pr and Ex can be

used to combine a family of three algebraic equations into the total

model.

4. Draw the constraint matrix for Figures 1, 5, 6 and 7 of Chapter One.

5. Draw the constraint matrix for Figure 3 of Chapter One. Can you

suggest how the term, “Basic Nodal Square” was developed?

6. Regarding the mathematical model depicted in Figure 1-3, which of

the following computational requests are allowable and which are

not allowable?

For the allowable requests, draw the directed bipartite graph which

depicts the computational flow. For the unallowable requests,

discuss the reason(s) for the unallowability.

Computational Requests:

E=f(T,M), A=f(T,E), A=f(P,M)

Chapter 3 GENERAL RESULTS

From Protomath to Math to Metamath

3.1 LANGUAGE AND MATHEMATICS

“You’ve opened my mind to many new concepts and definitions, but I

don’t see where this is all leading,” complained the manager. “Are there

results I can use? I feel as if I’m learning the vocabulary of a new and rich

language, but I can’t make sentences.”

“Your language/mathematics analogy is very apt,” complimented the

analyst. “Before the emergence of modern language humanity had probably

millions of years of protolanguage. Words were formed to represent

abstractions from the observed world and originally served to communicate

basic ideas such as danger warnings or cooperation in game hunts. Full

language appeared when the words were organized into complete-thought

sentences employing grammar and syntax -- which has a remarkable

worldwide structural similarity over all known languages. Similarly, before

the emergence of mathematics there were probably thousands of years of

protomathematics. Concepts of number and geometry were employed in

prehistoric times in practical ways for commerce and property surveys.

Full mathematics appeared with the organization of “math facts” into a

logical structure of definitions, relations and proofs -- which also have a

remarkable similarity across all cultures and languages.”

“Although the two appear different superficially, mathematics is

completely imbedded within language. All the rules of math and logic of

proofs are linguistic. The applicability of language to the world is orders of

magnitude greater than math; however when math is applicable, it offers

these important advantages: precision, consistency, calculatability,

generalizability, stability across cultures and languages, and perhaps most

 Constraint theory

50

importantly, provides a trustworthy vehicle to deduce conclusions from a

great diversity of inputs. True, it can be argued that math treats only a tiny

percentage of the world compared to language, but it was crucial to all the

advances of science, technology and economics which contribute to our

modern civilization.”

“Now just as math employed higher order abstractions based in language,

metamathematics employs abstractions of objects based in mathematics.

Constraint Theory is a form of metamathematics which employs the bipartite

graph and constraint matrix whose elements are the mathematical objects of

variable and relation. Thus, constraint theory is yet one more step removed

from the understanding we attain from natural language. That may be a

disadvantage if it appears the mathematical complexity is formidable -- but I

argue the complexity is well below that of other branches of math. The

advantage is that metamodels of this type actually can bring us closer to

methods of plausible reasoning and further enable mathematics to intensify

its beneficial augmentation of language in all the dimensions listed above.”

“There is a fundamental mystery pondered by writers such as Devlin

[13]: ‘Why does language come so easily to virtually every human and why

is math so hard -- even terrifying?’ A typical child acquires a vocabulary of

several thousand words and speaks in a respectable grammar even before

formal education begins. Protomath is also acquired quite early. But

education in math comes much later and never finds a comfortable place in

the minds of most people. Devlin argues that the primary reason is that these

people never live in what he calls the “math house” where the objects and

logic of mathematics become as familar as the everyday objects around

which we form language. Even highly trained engineers who successfully

apply integral transforms in the design of sophisticated control systems in

their early careers are loath to trust math applied to model building or

decision making as they take on management roles in their later careers.

You, sir, are an excellent example of this math phobia in highly educated

people.”

The manager’s glazed over eyes sharpened. “I would resent that remark,

but I don’t disagree enough. I’ve been exposed too many times to

mathematicians claiming to serve me by narrowly focusing on a small part

of the problem -- the only part where math is applicable -- and by attempting

to impress by presenting their incomprehensible results within a forest of

incomprehensible derivations. I’ve often wondered if the word ‘analyst’ had

its roots in ‘anal retentive.’ Invariably, I had to come in to add the necessary

additional dimensions and provide management judgment -- whatever that

means. Admittedly, when I did do math myself, I trusted that the proofs I

was given were correct, and tended to skip over them as I was a student.

3. General Results

51

Even the formulas and rules which I applied were not always provided with

the necessary assumptions to clarify their domains of applicability.”

“A major advantage that math has over language is its generizability into

domains which were previously incomprehensible,” the analyst pontificated.

As was mentioned in Chapter 1, we cannot really perceive numbers over

seven or so -- the way that we (and many animals) can perceive 1, 2 and 3.

But we so trust the algorithms of arithmetic that we at least have a feeling or

control of understanding that which we need to know about numbers into the

millions or billions: ‘which number is greater and by how much?’ ‘is number

a slightly greater than b or is it an order of magnitude greater?’ These useful

answers can be obtained without fully perceiving large numbers. Similarly,

the objective of constraint theory is to provide the manager of large models a

trustworthy method to obtain answers to certain important properties of

models: ‘Is the model consistent?’, ‘Is the computation a=f(b,z) allowable on

this model?’ These answers are useful whether or not the manager can

actually perceive the very high dimensions involved.”

“OK, thanks for the sermon,” said the manager, feeling that the

explanations were somewhat long. “Let’s see how you can bring me into

Devlin’s “math house” and what trustworthy results you have to provide.”

3.2 MOST GENERAL TRUSTWORTHY RESULTS

Theorem 1: If a model is inconsistent, then no computational requests

on it are allowable.

Proof: By Definition 13, the relation set of an inconsistent model is the

null set. By Definition 14, for a computational request to be allowable, the

projection of the model relation set onto the view space must have at least

one point. But the projection of a null set onto any view space must also be

the null set. Thus, if the model is inconsistent, any request is unallowable.

QED

“Is the reverse also true?” asked the manager. “Depends on what you

mean by ‘reverse’,” responded the analyst. “If you mean, ‘does

noncomputabililty imply inconsistency?,’ the answer is ‘no’ -- there are

other reasons for noncomputability than inconsistency; refer to Appendix A.

If you mean, ‘does consistency imply computability?’ the answer is ‘no’

again for the same reason. But if you mean, “does computability imply

consistency,’ then the answer is ‘yes’. We have to be careful as to how we

employ double negatives; not all natural languages recognize a double

negative as a positive. A mathematical implication which is two-way is

called ‘iff’ -- if and only if.” See Appendix C for a more thorough

discussion of this logic. But I fear we are digressing from the main thread

here.

 Constraint theory

52

“I couldn’t fail to disagree with you less,” commented the manager, self-

referentially.

Theorem 2: If any submodel of a total model is inconsistent, then the

entire model is inconsistent.

Proof: The total model relation set is the intersection of the relation sets

of all its submodels. Since the intersection of any set with the null set is the

null set, if any submodel relation is the null set, then the total model will also

become the null set and thus, by Definition 13, will be inconsistent. QED.

“These are a good start it seems,” commented the manager, but aren’t

they rather intuitive? And thus perhaps not so useful?”

“Well I hope all the remaining theorems will be as intuitive, or at least as

plausible as these,” the analyst responded. “As far as useful goes, it tells us

to check the consistency of a model before we attempt computations on it.

In my experience, most of the time computations fail, the model is checked

only after much wasted effort. The utility goes further: even if a part of the

model that is not used in the computation is inconsistent, then the

computation is not allowable. Look at Figure 3-1. At first glance, it would

appear that the computational request d=f(a,c) is allowable. However,

observe that on the left side of the model, we have over three relations

constraining the two variables e and f; this is a serious case of overconstraint

-- that is, the relation set for the submodel containing e and f is the null set.

Therefore, no computations, including d=f(a,c), are allowable.”

Figure 3-1. Inconsistency in one part of the model poisoning the whole model.

“OK, that seems nontrivial,” admitted the manager. “I would have

treated the d=f(a,c) computation as a work in progress and suppressed the

remainder of the model as requiring repair. I note that even if the

overconstrained submodel were reduced to just one basic nodal square, a

would be intrinsically constrained, thereby not permitting a to be an

independent variable.”

“Excellent observation,” complimented the analyst, “but you rarely know

in advance all the computational requests you wish to make on a model and

3. General Results

53

what portions of the model will be required for the request’s computational

paths. Thus, any submodel with a null set relation set can poison the entire

model. An even more severe case is shown in Figure 3-2. Here the

overconstrained submodel is in a completely separated component -- there

being no possible computational paths between it and the computational

request -- and the total model is still inconsistent, rendering all

computational requests unallowable.”

Figure 3-2. Inconsistency even in a disconnected component poisoning the whole model.

“Checking total model consistency seems to be a formidable task; every

pair of relations should be examined to see if they produce a null set,”

worried the manager.

“It’s nowhere near that bad,” the analyst reassured, “look at Theorems 3

and 4.”

Theorem 3: If two relations have no relevant variables in common, they

are consistent with each other.

Proof: Assume two relations: relation 1 with relevant variables a,b,c,..

and relation 2 with relevant variables r,s,t,.. . Choose any point in relation 1

--say a1,b1,c1... -- and extend it into r,s,t.. space, resulting in the set defined

by: {a1,b1,c1....r,s,t...}. Similarly, choose any point in relation 2 -- say

r2,s2,t2... -- and extend it into a,b,c... space, resulting in the set defined by

{a,b,c..r2,s2,t2..}.

Now since the r,s,t of the relation 1 extension can take on any value, set

them equal to the r2,s2,t2 of the relation 2 extension, and set the a,b,c of the

relation 2 extension equal to the a1,b1,c1 of the relation 1 extension. Thus the

two sets of coordinates are identical and we have guaranteed that there is at

least one point in the intersection of the extensions of the two relations.

QED. (See Figure 3-3 for a simple example of this process.)

“This substantially eases the task implied by Theorem 2; only relations

which are ‘adjacent’ -- that is, have relevant variables in common -- can

engender inconsistency.”

 Constraint theory

54

Figure 3-3. A simple example of the consistency of relations without common relevant

variables.

Definition 15: A component of a graph G is a maximal connected sub-

graph of G. In other words, a connected sub-graph H is a component of G if

H is not a proper sub-graph of any connected sub-graph of G (Gross &

Yellen, 2006).

Theorem 4: If two connected components are internally consistent, they

are consistent with each other.

Proof: Any two relations which lie in separate components cannot share

variables in common. Therefore, by Theorem 3, they are consistent. QED.

Theorem 5: No computations involving variables from different

components are allowable.

Proof: For computational allowability, Definition 14 requires that the

intersection of the projections of the relations not be the null set and that the

request’s variables be relevant to it. The first requirement is satisfied but --

because there are no relevant variables across disconnected sets -- the second

requirement is not met. Thus all computations across disconnected sets are

not allowable. QED.

“Now that’s certainly plausible,” said the manager. “I wouldn’t expect

that one could compute across disconnected components which are really

islands in separate universes.”

“Agreed,” agreed the analyst.

Theorem 6: The allowability of a computational request is independent

of permutations of its dependent and independent variables.

Proof: An allowable computational request will have a satisfactory

relation set in the sense of Figure 2.14. Choosing any dependent variable out

of the request’s variables by merely rotating the view space will not alter the

validity of the relation set. QED.

Theorem 7: All possible computational requests on a model with K

knots (variables) is the power set of the knots and its number is equal to 2
K
.

Proof: Each computational request is a subset of the set of knots and can

be uniquely identified with a binary number whose length equals the number

3. General Results

55

of knots. Therefore the number of subsets in the set of K knots equals 2
K
.

QED. Refer to Figure 3-4 for demonstrations and simple examples.

Figure 3-4. Three demonstrations that the power set of the set of N elements contains 2N

subsets.

“If it weren’t for Theorem 6,” commented the manager, “the number of

possible computational requests predicted by Theorem 7 would be far larger,

I presume.”

“Certainly,” agreed the analyst, “for each of the 2
K
 subsets of dimension

d, one could choose d dependent variables, enormously increasing the

possible computational requests. Of course, one could still choose different

ways to plot the results of the computational requests, but that is really

 Constraint theory

56

outside the concern of constraint theory, which is mainly concerned about

the fundamental allowability of any of the plots.”

Theorem 8: All possible submodels of a model with N nodes (relations)

is the power set of N and its number equals 2
N
.

Proof: This proof is identical to that of Theorem 7; merely replace K

with N.

Definition 16: A tree is that structure within a connected component of a

graph such that there is exactly one path connecting every pair of vertices.

Definition 17: A circuit cluster is that structure within a connected

component of a graph such that there are two or more independent paths

connecting every pair of vertices. Independent paths share only their initial

and terminal vertices. Adjacent circuits are circuits which share at least one

edge.

Refer to Figure 3-5 for examples of trees, circuits, adjacent circuits and

circuit clusters.

Definition 18: A universal relation is a relation which does not limit any

of its relevant variables to a given range. For example, x+y=5 and m=n
3
are

universal relations, but s
2
+t

2
=3 and z>4 are not.

Theorem 9: Any set of universal relations whose bipartite graph has a

tree structure is consistent.

Proof: First, prove that any two universal relations that have only one

relevant variable in common are consistent. (Inconsistency could occur if

the common variable had incompatible constraints placed on it by the two

relations, but all the variables, by Definition 18, have unlimited ranges.)

Then append additional relations to the model in each case with only one

variable in common, forming a tree. Consistency will be maintained at each

step. QED.

3.3 CLASSES OF RELATIONS

Thus far, all the results and discussions of consistency and computability

have been on the basis of any conceivable type of general relation. As was

discussed in Chapter 2, relations can take on an extremely wide variety of

properties. In order to progress towards effective tools for the management

of multidimensional math models, it will be necessary to define three

important classes of relations.

3. General Results

57

Figure 3-5. Examples of trees, circuits, adjacent circuits and circuit clusters.

Definition 19: Relation classes: Consider the general relation A2. Let l

be a line through any point in A2. Let A2∩l be the intersection of A2 with l,

and let PrlA2 be the projection of A2 onto l. Then:

 A2 is a discrete relation if both A2∩l and PrlA2 are point sets of

measure zero.

 Constraint theory

58

 A2 is a continuum relation if A2∩l is a point set and PrlA2 is an

interval set of non-zero measure.

 A2 is an interval relation if both A2∩l and PrlA2 are interval sets

of non-zero measure.

Examples of these three relation classes are given in Figures 3-6 and 3-

6A.

Figure 3-6. Examples of the three relation classes.

These three relation classes will be treated in the next two chapters. We

will discuss the continuum relation class first - in Chapter 4 - because it can

be argued that it is the most important for math model building and also

because constraint theory happens to be most useful for this class. Chapter 6

will treat discrete and interval relations.

3. General Results

59

Figure 3-6A. Three relation classes can be defined - at least locally - by the number of points

in their intersections with a line and the number of points in their projections onto a line.

3.4 MANAGER AND ANALYST REVISITED

“I’m beginning to see what you mean by ‘living in a math house,’” the

manager complained mildly. “Although all the definitions and Theorem

proofs are imbedded in natural language, they appear far ‘tighter and

rigorous’ than the ambiguities of normal conversation. It certainly doesn’t

make for fast reading. Especially if one wants to understand the proofs.”

“I’m trying to make it as plausible and painless as I can,” responded the

analyst. “I encourage you to read the proofs and get in the spirit with the

mathematical rhythm of this theory. Otherwise, you won’t gain as much

confidence in the trustworthiness of extending these results into the high

dimensions that we need in order to manage modern models. So far, you’ve

just entered the foyer of the ‘math house’; I want to show you at least three

more rooms.”

 Constraint theory

60

3.5 CHAPTER SUMMARY

 Language and mathematics are two of humanity’s greatest gifts and

are remarkably similar. However mathematics is more precise and

is embedded within language which is more general. We need to

become familiar with ‘the math house’ in order to extend our results

to unimaginably high dimensions.

 Model consistency is a necessary requirement for computational

allowability. If any part of a model is inconsistent, the entire model

is therefore inconsistent, but relations with no common relevant

variables are consistent. Universal relations with a tree graph

structure will always be consistent. Computations across

disconnected components are not computable.

 All possible computational requests are the power set of the set of

the variables and they number 2
K
; all possible submodels are the

power set of the relations and they number 2
N
.

 In order to provide a basis for more specific results, three classes of

relations are defined:

o discrete, dealing mainly with point sets such as boolean

logic;

o continuum, dealing mainly with continuous curves; and

o interval, dealing mainly with densely packed sets such as

x>5.

3.6 PROBLEMS FOR THE GENERAL STUDENT

1. Construct a simple example for Theorem 1 showing that

consistency is necessary for computability.

2. In the example given in chapter 1, was the model provided

consistent? If so, why weren’t all the computational requests

allowable? If not, why were some of the requests allowable?

3. Construct a simple example for Theorem 2 showing that any

submodel inconsistency “poisons” the entire model.

4. Given a model with K=4, show all the possible computational

requests and show that they number 2
K
. (For the sake of

completeness, the full set and the empty set are considered valid

“subsets”.)

5. Construct a simple example demonstrating the validity of Theorem

9.

Chapter 4 REGULAR RELATIONS

Searching for the Kernels of Constraint

4.1 COGNITIVE BARRIERS TO CIRCUITS

“I must admit that the foyer of the math house was fascinating,” said the

manager, “and the rigorous structure based on the previous definitions was

quite impressive. With the theorems and their proofs, I guess I’ve

progressed from protomath to full math. However, it was a little like the ten

commandments: after an admonition on how much I should respect and

revere this central philosophy, all I got was a series of negative statements:

can’t kill, can’t commit adultery, can’t compute if inconsistent... I’m still

looking for useful rules which will permit me to manage, as this book’s title

promises.”

“This Chapter will present many rules and procedures by which you can

more effectively manage large math models,” assured the analyst. “In fact, it

will end with a Constraint Theory Toolkit which summarizes the most useful

of the theorems, rules and procedures.”

“Central to many of the rules will be the treatment of circuits and loops

within extremely tangled bipartite graphs. Many researchers appear to have

a basic phobia about circuits. Logicians dislike self-referential loops

because of the potential for paradoxes. Early in the field of control systems,

feedback was thought to be illogical. Even von Neumann classified

intransitive loops of preferences as ‘irrational.’ (See Figure 4-1) Devlin

[12] noted that the common structure of language worldwide was treelike

and hypothesized that ‘our cognitive wiring favors trees.’ So I’m asking you

to keep an open mind on the concept and value of circuits and loops.”

 Constraint theory

62

Figure 4-1. The concept of circuits has initially appeared to be contrary to rational thought,

but their careful management has led to many advances.

“I’ll try, but this is the briefest philosophical introduction you’ve given to

any chapter so far,” chided the manager. “I’ve attempted to enjoy your

pontifications on cognitive science, language, origins of mathematics and the

universe. Are we properly warmed up for the meat of this chapter?”

4. Regular Relations

63

“Yes, I hope so,” responded the analyst. “We have more material in this

chapter than any other. It is the heart of Constraint Theory so far in its

development. I’m anxious to get going.”

4.2 NODE, KNOT AND BASIC NODAL SQUARE

SANCTIFICATION

Definiton 20 A pair of relations are locally universal if the ranges and

domains of their relevant variables are mutually compatible. In other words,

any output from one relation is an acceptable input to the other. For example

the circle x
2
+y

2
=1 is locally universal with x=0, but not with x=3.

Postulate 1: Model builders inherently wish their relations to be locally

universal.

Although an important assumption for constraint theory analysis, the

actual testing of universality can only be accomplished on the full model; the

constraint theory metamodels do not have sufficient information.

Definition 21: A set of regular relations are continuum relations which

are locally universal with all their interacting relations.

Definitions 22: The constraint potential of a graph G is defined as p(G)

and equals the excess of nodes over knots: p(G)=N-K. It is the negative of

the “degrees of freedom” notion used in Chapter 1. It will be useful to

define two circumstances where constraint potential is insightful:

pi(G)=intrinsic constraint potential; prior to any computational

request,

pr(G)=resultant constraint potential; after the application of

independent variables, constants and computational flow from

neighboring portions of the bipartite graph.

Definition 23: The degree of a vertex, d(v), equals the number of arcs

that intersect that vertex. For the node vertex, d(n), it is the number of

variables that are relevant to the relation; for the knot vertex, d(k), it is the

number of relations which employ that variable. Refer to Figure 4-2 for

examples.

Thus, for example, the constraint potential of a node with degree d(n) is

merely 1-d(v) since it represents one node attached to d(n) knots. In general,

the average degree of all of a graph’s vertices is a strong indication of the

graph’s connectivity.

Theorem 10: For a model graph of regular relations, with a tree-like

topological structure, the computational rules are:

 Constraint theory

64

for nodes: d(n)-1 inputs permit 1 output;

for knots: 1 input permits d(k)-1 outputs.

Proof: Consider the d(n)-dimensional space of any given node: if d(n)-1

of these dimensions are chosen as inputs, then this will define a line which

will intersect the relation in a point (or set of points), by definition 19, since

the relation was assumed to be regular and thus a continuum relation. QED1.
The single output of each of these computations can then propagate to all

other d(k)-1 nodes for which this variable is relevant and, by Definition 21,

will be compatible with all of them because a regular relation is locally

universal. QED2.

Thus the intuitively appealing rules which were employed so extensively

in Chapter 1 are now rigorously “sanctified” by Theorem 10. This concept

will be generalized to all topological structures later in the chapter.

Figure 4-2. The degree of a vertex is merely the number of edges which intersect it.

Definitions 24: If any node on the path has a resultant constraint

potential greater than zero, the computational request is not allowable due to

overconstraint. If any node on the path has a resultant constraint potential

less than zero, the computational request is not allowable due to

underconstraint. If the entire path has a resultant constraint potential of

zero, the computational request is perfectly constrained and is allowable.

Refer to Figure 4-3.

However, most math models -- even those which could be called very

loosely connected -- will have bipartite graphs with circuit structures. When

the computational flow described by the above rules reaches the vicinity of a

circuit, over- and underconstraint cannot always be determined

4. Regular Relations

65

unambiguously, and a new rule will be required. For this purpose, it is

necessary to define a special type of structure within the bipartite graph and

constraint matrix:

Definitions 25: A Nodal Square, NS, is a submodel of a math model

such that its constraint potential, p(NS)=0. A Basic Nodal Square, BNS, is a

nodal square which does not contain a smaller nodal square within it.

Figure 4-3. Computational (constraint) flow in trees requires only the simple rules: "d(n)-1 in,

1 out for nodes; and 1 in, d(k)-1 out for knots."

Fundamentally, nodal squares and basic nodal squares have the property

that, in their local submodel, the number of variables equal the number of

relations. Examples are shown in Figure 4-4. Recall that submodels are

formed from the total model by grouping subsets of the nodes (or rows of the

constraint matrix); thus the term, “nodal” squares if all the elements of the

constraint matrix are captured in a “square.” In this context, groupings of

 Constraint theory

66

the knots (or columns of the constraint matrix) have no meaning. As defined

earlier, groupings of the variables form the power set of all possible

computational requests.

Figure 4-4. A Nodal Square, NS, is a grouping of the rows of a constraint matrix, [C], such

that all the relevant elements are captured within a square. That is, the submodel has an equal

number of relations and variables. A Basic Nodal Square, BNS, is an NS which does not

have a smaller NS within it.

This brings us to the second computational theorem of this chapter:

Theorem 11: Every Basic Nodal Square (BNS) of regular relations

exerts point constraint on each of its relevant variables. That is, all its

variables are constrained to either points or sets of points.

4. Regular Relations

67

Proof: First, note the “dimension reducing” property of regular relations.

A regular relation applied to k-dimensional space will form an allowability

set of dimension k-1. If a second regular relation is applied, the intersection

of the two allowability sets will have dimension k-2. In general, if n sets are

intersected, the resulting dimension will be k-n. (Refer to Figure 4-5) Since

the BNS has by definition a constraint potential of zero, K-N=0 and thus the

intersection of all the N relations has a dimensionality of zero. QED.

Figure 4-5. Regular relations have the property that each application of a new relation reduces

the dimensionality of the total relation by one.

 “I have no argument with this result,” commented the manager.

“Theorem 11 merely tells us that if we have n simultaneous equations

involving n variables, then we should be able to solve for all these variables.

In fact, I observe that the BNS can even be a 1x1 square: one equation and

one unknown, which I also expect to always be able to solve.”

“Yes, I agree that it is intuitively appealing,” responded the analyst, “but

that intuition is based on the career-long experience of mindlessly

manipulating algebraic rules. Theorem 11 “sanctifies” this algebraic rule

from the broader perspective of multidimensional relation theory. Perhaps

what is less intuitive -- and therefore more valuable -- is that the BNS is the

 Constraint theory

68

“kernel of constraint” in multidimensional math models. Figure 4-6 shows

why the nodal square (NS) is not the kernel of constraint. In some cases the

‘shell’ between the NS and BNS is merely the resultant constraint domain

emanating from the BNS’ sources of constraint; in other (more serious)

cases, part of the NS is overconstrained with overlapping BNSs and the

remaining part is tree-like and underconstrained.”

Figure 4-6. The Nodal Square (NS) is not the kernel of constraint; only the Basic Nodal

Square (BNS) is. In NS-type a, constraint flows from the BNS to fill out the NS. In NS-type

b, multiple BNSs overconstrain some of the knots and constraint doesn't even reach the other

knots.

“Thinking back to the simple example of Chapter 1, let’s examine the

general propagation of constraint across a math model,” suggested the

analyst, referring to Figure 4-7:

4. Regular Relations

69

Even before a computational request is made, we must determine if the

model is consistent. As we observed earlier, there may be intrinsic sources

of constraint in the form of BNSs (including 1x1 BNSs) that either point

constrain the model or, worse yet, overconstrain it if the BNSs overlap

common variables. If the BNSs overlap and contribute to overconstraint,

then the model is not consistent and we can go no further until the

overconstraint is relieved. Worse yet, the constraint may propagate into

resultant constraint domains, possibly overconstraining variables which are

in two or more of these resultant domains. Again, if this occurs, the model is

not consistent; overconstraint must be relieved before we can ask for

computational requests.

When checking for computational allowability, the procedure is quite

similar, except that, in addition to the constraint sources, we now must

superimpose constraints in the form of independent variables and variables

held at some selected constant value. As is shown in Appendix A, the

application of the rules of Theorems 10 and 11 will generally not yield an

allowable computational request. In tree structures, the Theorem 10 rules

can be applied very rapidly, but they will likely bog down in the vicinity of

circuit structures where the BNSs are hiding.

Therefore, for both the determination of model consistency and

computational allowability, the location of the BNSs become critical; they

are the “kernels of constraint” around which inconsistency and

unallowability occur.

“Well,” observed the manager, “they weren’t hard to find in the example

of Chapter 1. And for higher dimensioned models, all I need to do is merely

examine the subsets of the constraint matrix rows to see where the BNSs are

hiding.”

“There’s that word ‘merely’ again,” chided the analyst. Appendix A

deals with sizable models of thousands of variables and relations. However

let’s look at just a medium size model of say, 100 dimensions. The number

of possible submodels -- or subsets of the rows of the constraint matrix, as

you put it -- is the power set of the set of nodes and is equal to 2
100

. Even if

your computer could examine one of these subsets for a possible BNS every

nanosecond, it would still take about 10
14

years, or a thousand lifetimes of the

universe to go through this power set exhaustively.”

“Attempting to find BNSs by staring at the bipartite graph would be even

worse,” guessed the manager. “Hundreds and thousands of vertices would

appear as a monstrous ‘snake chart.’”

 Constraint theory

70

Figure 4-7. Even before a computational request is made, intrinsic constraint sources --

formed on the BNS kernels -- may exist in consistent models. These sources flow their

constraint outwards into resultant constraint domains. If these domains overlap,

overconstraint of the variables within the overlap is likely, rendering the overall model

inconsistent.

“Absolutely,” agreed the analyst. “The low dimensional bipartite graphs

are certainly useful to develop general theories, but they would be hopeless

to use as a tool for realistically complex models. Figure 4-8 is an example of

4. Regular Relations

71

how messy it can get. There is an important theorem in set theory by Hall

[14] which we modify into bipartite graph theory as:

Theorem 12: In order that a distinct output variable be associated with

each of m relations it is sufficient that, for each K=1,2,3..m, any selection of

of K of the relations shall contain between them at least K relevant variables.

The computer aided method is the only one feasible and we need the

constraint matrix for communication with the computer. However, if we are

to address realistic dimensions of modern models, we must avoid the trap of

exhaustively searching for the BNS culprits through power sets with their

attendant exponential explosions.

Figure 4-8. A bipartite graph so large that gravity forces it into a spherical shape.

Our strategy will be to understand how the properties of the BNS fits

within the easily computed properties of the bipartite graph. If we are alert

 Constraint theory

72

and understand what we’re doing, we can improve the computation time to

find the BNS foxes in the dense forests of the bipartite graph by factors of

trillions. But first, in Section 4.3 we must summarize some properties of the

bipartite graph, before we develop practical rules to locate the BNSs in

section 4.4.

4.3 USEFUL PROPERTIES OF BIPARTITE

GRAPHS

The most obvious properties of any graph are its connectedness, its tree-

ness and its circuit-ness. Each of these has important consistency and

computability consequences and we will treat them in this order.

In order to focus on the structure of graphs, let us repeat these three

important definitions from Chapter 3:

Definition 15: A component of a graph G is a maximal connected sub-

graph of G. In other words, a connected sub-graph H is a component of G if

H is not a proper sub-graph of any connected sub-graph of G (Gross &

Yellen, 2006).

Definition 16: A tree is a minimally connected graph that has no

circuits. And in a tree, there is exactly one path connecting every pair of

vertices.

Definition 17: A circuit cluster is that structure within a connected

graph such that there are two or more independent paths connecting every

pair of vertices. Independent paths have no vertices in common except their

end points.

Examples of definitions 15, 16 and 17 are provided in Figure 3-5. Let us

first address an automatic algorithm to determine the connected components

of a graph.

Definition 26: A node and knot are adjacent when there is an edge

connecting them. A vertex is a separating vertex if its removal disconnects

the graph.

From the viewpoint of the constraint matrix, the existence of a relevant

element in the xth row and yth column denotes the existence of the xy edge

and thus the adjacency of the x node and y knot.

Definition 27: The connectedness algorithm, by repeatedly applying the

adjacency definition, will partition any graph into disjoint connected

components.

Definition 28: The separating vertex algorithm, by employing trial

eliminations of vertices and determining whether the remaining graph is still

connected, will locate the graph’s separating vertices.

These algorithms are exhaustive and will always work to determine the

connected components and separating vertices of any graph, including

4. Regular Relations

73

bipartite graphs. However, it may sometimes be useful to employ more

global results which are a function of only the total number of vertices and

edges and provide faster conclusions on some occasions. These results,

showing when the graph must be connected, may be connected, and cannot

be connected are presented in Figure 4-9.

Figure 4-9. Domains of connectedness for bipartite graphs as a function of the number of

edges, E, and the number of vertices, V. (Recall that V=K+N.)

Theorem 13: A connected graph which has V-E=1 is a tree. A tree is a

minimally connected component and every vertex of a tree is a separating

vertex.

Proof: Consider the simplest possible case for a tree: two vertices

connected by one edge; thus V=2 and E=1, yielding V-E=1. Now add more

fragments which are connected but do not contribute more paths between

 Constraint theory

74

vertex pairs. In all cases, these fragments will add one more vertex and one

more edge; thus V-E=1 is still true no matter how many more fragments are

added. QED1.

Since a tree provides only a single path between any vertex pair,

removing any vertex will interrupt that path and disconnect the tree into

separate components. QED2.

Theorem 13 provides us with a simple and powerful tool for the analysis

of trees within graphs, no matter how highly dimensional and complex they

become. Figure 4-10 presents examples of how it can be applied.

Figure 4-10. Theorem 13 is unerring in its ability to identify trees. Initial layouts of bipartite

graphs may frequently disguise the fundamental "tree-ness" of the structure, especially when

the dimension is large.

4. Regular Relations

75

Definition 29: The tree algorithm for graph G with V vertices and E

edges: If V-E=1, then G is a tree; if V-E>1, then G is disconnected, if V-

E<1, then G has at least one circuit.

A companion algorithm which is even simpler and in many cases can

locate the very ends -- or “twigs”-- of the trees easily, is:

Definition 30: The tree-twig pruning algorithm: search the entire

constraint matrix for vertices of degree one -- solitary elements in a row or

column -- and remove the row (which is the node or relation). Repeat until

no vertices of degree one remain. The residue will be a graph completely

comprised of circuits, which may be connected by “internal trees” (without

twigs).

Finally, let us consider the most complex case of circuits within graphs:

Definition 31: The circuit rank, c(G), of a graph, G, with V vertices, E

edges and P connected components is: c(G)=E-V+P.

Definition 32: A simple circuit, Cj is a directed sequence of connected

edges that does not use any vertex or edge twice. A circuit vector for circuit

Cj is a sequence of elements, {e1,e2,e3...} where:

 +1, if Cj traverses edge i in positive sense

 ei = -1, if Cj traverses edge i in negative sense

 0, if Cj does not traverse edge i

For the purpose of determining the ei, the edges of G are arbitrarily

assigned directions.

Definition 33: Circuit Vector Addition and Independence have exactly

the same meaning as vector addition and independence in linear algebra.

Refer to Appendix D for a brief summary of the relevant portions of

linear algebra which we will use for graph theory analysis. This relationship

between vector spaces and graph theory can be viewed as another example

of the unity and even beauty of mathematics. Its utility is demonstrated by

the following simple and powerful theorem:

Theorem 14: The number of simple, independent circuits of a graph G,

equals c(G), its circuit rank.

Proof: See Reference [2].

This theorem is truly amazing, providing us with very useful information

about the complexity of circuit clusters, requiring only a knowledge of the

number of the graph’s vertices and edges -- these are merely the

 Constraint theory

76

semiperimeter and the number of non-trivial elements of the constraint

matrix. The theorem essentially tells us the dimensionality of the circuit

vector space. In linear algebra by comparison, there is no comparable

method to compute the dimensionality of the vector basis of a space of many

vectors.

A dramatic example of Theorem 14’s application is shown in Figure 4-

11.

A relatively simple circuit cluster has 13 simple circuits, but only 4 of

them are independent circuits in the sense of Definition 30. This is

analogous to a circumstance where 13 vectors are defined but they can be

captured within a 4-dimensional vector space. In graph theory we can

compute the 4 dimensions by a trivial computation of the observable

variables V and E; but in linear algebra, the computation is far more arduous

and becomes rapidly worse with higher dimensions. Figure 4-10a provides

examples of circuit rank, c(G), as well as constraint potential, p(G).

4. Regular Relations

77

Figure 4-10a. Both the circuit rank and the constraint potential of a bipartite graph will be

useful to locate the kernels of constraint in a complex model.

 Constraint theory

78

Figure 4-11. A bipartite graph with 13 simple circuits. However, a simple computation of the

circuit rank, c(G)=E-V+1 reveals that there are only four independent circuits.

Definition 34: The circuit rank of G algorithm: compute the number of

independent circuits of G by: c(G)=E-V+P.

4. Regular Relations

79

Definition 35: A taxonomy of graph structures. The taxonomy listed

below classifies all possible graphs by defining these five properties in

sequence: a) number of paths between vertices, b) number of independent

paths, c) existence of trees, d) whether the trees are internal or external, and

e) whether the trees connect to other trees or to circuit clusters.

1. Zero paths connecting vertex pairs: disconnected components

2. One path connecting vertex pairs: isolated trees

3. Many paths connecting vertex pairs: circuit/tree structures

3.1. All paths are independent: circuit cluster

3.2 Not all paths are independent: circuit/tree networks

3.2.1 Circuit clusters w/o trees: “kissing” circuit clusters

3.2.2 Circuit clusters with trees:

3.2.2.1 Trees are external: circuit clusters with “twigs”

3.2.2.2 Trees are internal: “doily” structures

3.2.2.2.1 Trees-trees

3.2.2.2.2 Trees- circuit clusters

These definitions are summarized in Figure 4-12, along with a Venn

Diagram demonstrating the nested nature of the sequential categories.

Theorem 15: In the taxonomy of Definition 35, the following categories

are mutually exclusive and exhaustive: 1, 2, 3.1, 3.2.1, 3.2.2.1, 3.2.2.2.1 and

3.2.2.2.2.

Proof: Examination of the nested category specifications -- with the aid

perhaps of Figure 4-12 -- demonstrates that the specifications are mutually

exclusive and exhaustive at every level of classification. Specifically,

3.2.2.2.1 and 3.2.2.2.2 make up 3.2.2.2, which together with 3.2.2.1 make up

3.2.2, which together with 3.2.1 make up 3.2, which together with 3.1 make

up 3, which together with 1 and 2 make up all possibilities. QED.

In the next section, we apply the above properties of graphs in order to

locate the BNS kernels of constraint in a far more efficient manner than the

brute force approach mentioned above.

4.4 CORNERING THE CULPRIT KERNELS; TEN

EASY PIECES

Now that we’re somewhat familiar with some aspects of “the math house

of graphs” we can extend the previous section’s results on general graph

theory to bipartite graphs and corner the BNSs which may be lurking deep

within the tangled web of models like Figure 4-8.

 Constraint theory

80

Figure 4-12. Classification chart and Venn diagram for the structures of a bipartite graph.

Categories 1, 2, 3.1, 3.2.1, 3.2.2.1, 3.2.2.2.1 and 3.2.2.2.2 are mutually exclusive and

exhaustive.

First of all, let us treat the trivial case of trees which terminate with nodes

of degree = 1. These are really 1x1 BNSs and do not support the spirit of

building multidimensional models. In every case, they represent a relation

with a single variable (because the nodal degree = 1) and this variable can be

solved for prior to its incorporation into the total multidimensional model.

4. Regular Relations

81

In other words, these “nodal twigs” are single dimensional models and serve

only to clutter the total model. They can be easily identified since they are

the rows of the constraint matrix which contain only one element. Once that

single relevant variable has been determined, its value can be “absorbed”

into all its other relevant nodes as a constant, thus eliminated from the

constraint matrix and bipartite graph.

Next, we will prove a simple theorem about integers which will help

speed many of the proofs in this section:

Theorem 16: Let p1, p2, p3.... pi be a set of integers. If  
n

i np
1

 then

there exists at least one pi such that pi>-1.

Proof: Consider the trivial case of n=1: obviously if p1>-1, then p1>-1.

Next, consider n=2, then as can be seen in the

diagram on the right, if p1+p2>-2, then either

p1>-1, or p2>-1. Assume that the theorem is

true for n=1, and we add a (n+1)th term equal

to -1 (the most stress-full case) to both sides:

thus we obtain: p1+p2+... pn -1> -n-1, which is

identical to  
n

i np
1

. Thus we have

shown that the theorem is true for n=1 and

n=2, and furthermore, if it is true for n, then it

is also true for n+1. QED.

“I believe that this theorem is the least interesting one I have ever

seen,”sulked the manager.

“I would tend to agree with you,” said the analyst. “That’s why I

frequently refer to it as the ‘trivial’ theorem and it’s not counted among the

‘Ten Easy Pieces.’ However, as you will soon see, it helps prove other

theorems more compactly which will enable us to find BNSs trillions of

times faster than the method you suggested earlier (the ‘merely’ method).

“Trillions?!” mumbled the manager under his breath.

We are now prepared to relate the properties of a general BNS to its

constraint potential and topological graph structures defined in the previous

section by way of these ten compact results:

Theorem 17: If p(G) = N – K ≥ 0, G contains at least one BNS.

Proof: If G has p(G) = 0, its constraint matrix will be a nodal square

(NS). If G has N – K > 0, its constraint matrix will be a rectangle with more

rows than columns, in which case there will always be rows (sub-graphs)

which can be removed to bring p(G) = 0, thus forming a NS. If there is no

 Constraint theory

82

smaller NS within it, it is a BNS. If there is a smaller NS within it, it is still a

BNS within G. QED.

Theorem 18: A BNS cannot have a subgraph, Gs, with p(Gs)>0.

Proof: If p(Gs)>0, it must have a BNS within it, and by Definition 25

cannot be a BNS itself. QED.

Theorem 19: Every BNS must be connected; i.e.,

it cannot straddle two components.

Proof: Assume G is a BNS which is not

connected and has two subgraphs G1 and G2. Since

p(G)=0, then p(G1)+p(G2)=0. But then, by Theorem

16, either p(G1)>0, or p(G2)>0. By Theorem 17, G has a BNS within it,

contradicting the assumption. QED.

Theorem 20: No BNS can be a tree.

Proof: Recalling that terminal nodes are not allowed,

the simplest tree is a node between two knots. Adding

more tree fragments with N-K<0 will either keep p(G)=-

1 or further decrease p(G). Thus p(any tree)<0 and it

can’t be a BNS. QED.

Theorem 21: No BNS can have a subgraph which is

a tree.

Proof: Assume that G is a BNS comprised of a tree

subgraph, Gt, and another subgraph, G2, joined at a

knot. By this assumption, p(G)=0, and from theorem

20, p(Gt)<0. Since Gt and G2 share a knot,

p(G)=p(Gt)+p(G2)+1=0, resulting in p(G2)>-1. By

Theorem 18, G2 must have a BNS within in it resulting

in the conclusion that G cannot be a BNS since there is

a smaller BNS within it. The proof is similar if the

subgraphs are connected by a node. QED.

Theorem 22: No BNS can lie across circuit clusters with a separating

vertex.

Proof: Assume G is a BNS which lies across circuit

clusters G1and G2 with either a node or a knot as a

separating vertex. If the vertex is a knot, then

p(G1)+p(G2)=-1; if it’s a node, p(G1)+p(G2)=+1. In either

case, by Theorem 16, one or the other of the subgraphs

has constraint potential equal to or greater than zero.

4. Regular Relations

83

Thus, at least one BNS lies within the subgraphs and no BNS can lie across

both. QED.

Theorem 23: No BNS can lie across a tree-like network of circuit

clusters linked by trees which are attached to trees.

Proof: Assume G is a BNS which lies across

a chain of circuit clusters linked by trees. Let G1

and G3 be the circuit clusters and G2 be the tree.

Since the total constraint potential equals zero,

and the constraint potential of the tree subgraph

is negative, by Theorem 16, the constraint

potential must be equal or greater than zero in at

least one of the circuit clusters. Thus, a BNS

must lie in a sub-graph, and the total graph

cannot be a BNS. QED.

Theorem 24: No BNS can lie across a tree-like network of circuit

clusters which are linked by trees to other circuit clusters.
Proof: Since, by definition, the trees linking the circuit clusters together

are internal trees, they can have no external twigs and the constraint potential

of each tree equals +1, at most. A “meta-tree” can be formed by letting the

circuit clusters be vertices and the connecting trees become edges. By

Theorem 13, V-E=1 for a tree, thus in the metatree, the number of circuit

clusters minus the number of connecting trees equals 1. As before, let us

assume that the network is a BNS, so:  
n

i npGp
1

)1(0)(. This

yields nnpi

n

 1 . Thus, by Theorem 16, at least one of the pi>-

1 and thus there must be a BNS within one of the circuit clusters. QED.

Theorem 25: Every BNS is the union of adjacent circuits within a circuit

cluster. (The “inside out” BNS location theorem.)

Proof: Recall the taxonomy of Definition 35 and Theorem 15 which

listed an exhaustive and mutually exclusive set of graph structures. BNSs

cannot lie across connected components, can’t be a tree or have tree

appendages, or be linked by trees, and can’t be within circuit clusters linked

by separating vertices. The only remaining structure is the union of circuits

within a single circuit cluster. QED.

Refer to Figure 4-13 for examples of BNSs in graph structures. Note

that, although every BNS must lie across adjacent circuits, not every circuit

or union of circuits necessarily contains a BNS. This is another example of

 Constraint theory

84

the non-symmetry of certain theorems which are not “if and only if”

theorems. This misunderstanding has been the largest cause of confusion

among students.

Figure 4-13. Example of Theorem 25, the "inside out" theorem. All BNSs are the union of

adjacent circuits and lie completely within a circuit cluster.

Definition 36: A set of BNSs is independent if no single BNS is a linear

function of any combination of the other BNSs. (See Figure 4-14 for

examples.)

Theorem 26: Every circuit cluster (cc) with a constraint potential of

p(cc)>0 contains at least p(cc)+1 independent BNSs. (Proof provided later.)

Refer to Figure 4-14 for an example of BNSs in cc’s.

“Are you done with machine-gunning theorems at me?” complained the

manager. “I told you before that even in my most scholarly days, I tended to

skip over the proofs of theorems. Here, you haven’t avoided any proofs and

you’re even lapsing into using acronyms more frequently. That may speed

the exposition, but it also impedes the understanding somewhat.”

4. Regular Relations

85

“Sorry,” apologized the analyst, “but I’m really trying to communicate

the compactness and rigor of this little corner of mathematics. This

hopefully provides a foundation for the rules of the next section. If this were

a more typical book on mathematics, the ten theorems would have been

aggregated into two or three at the most and the rest demoted to lemmas in

longer proofs that would have been far more difficult to follow. Regarding

acronyms, it is really worth your effort to learn and master them; it’s like

using language at a higher level of abstraction. So from now on, we’ll use

the shorthand ‘T12’ for ‘Theorem 12’ and ‘D9’ for ‘Definition 9’, etc.”

Table 4-1 provides an overview of the ten theorems, using this notation.

 Constraint theory

86

Figure 4-14. Examples of Definition 36. Sets of independent BNSs can have no members

which are linear combinations2 of other members.

2 From the standpoint of their linear algebra representations.

4. Regular Relations

87

Table 4-1. Ten Easy Pieces Summary; Cornering the BNS within the Bipartite Graph

 Constraint theory

88

4.5 CONTINUING THE PURSUIT INSIDE THE

CIRCUIT CLUSTERS (cc)

The analyst continued: “Now that we have cornered the culprit BNSs to

be inside circuit clusters, we must resort to both topological and constraint

properties of the bipartite graph to locate them precisely.”

“I presume that the constraint potential will be much more valuable

here,” the manager ventured.

“True,” agreed the analyst, “but not nearly as valuable as we would like.

For example, one would hope that if p(cc)<0, we could be assured that there

are no BNSs within that cc, and if p(cc)=0, then there are exactly p(cc)+1

BNSs within that cc. Unfortunately, we cannot reach either of these two

conclusions. Referring to Figure 4-15a, we see that a cc with p(cc)<0 can

still have BNSs and a cc with p(cc)>0 can have any number of BNSs equal

or greater than p(cc)+1. Look at the outer ring of the cc; because its a

bipartite graph, p(outer ring)=0. We can form Y inner loops, each of which

increases p(cc) by 1, while at the same time we can form Z other inner loops

each of which decreases p(cc) by 1. Thus, Y additional BNSs are formed

but the p(cc) = Y-Z. Rearranging, we see that Y=p(cc)+Z and that the

number of BNSs=Y+1=p(cc)+Z+1. Since Z=0, we conclude: the number of

BNSs=p(cc)+1. (This is the proof of T26 promised above.)”

“No more use than that?” complained the manager.

“Well, we can squeeze out a little more: From the viewpoint of the

constraint matrix, if a cc has p(cc)>0 then it has N-K more rows than

columns and thus N!/(N-K)!K! nodal squares can be found within this

rectangle (Figure 4.15b). That’s a help, but beware; just because every NS

must contain at least one BNS does not allow us to conclude that there are at

least N!/(N-K)!K! BNSs in the cc. In Fig 4.15c, we see that a single BNS

may be common to two or more NSs, and in Fig 4.15d, we see there can be

more than one BNS in an NS.”

“So we must also resort to the topology of the cc. From T25, we know

that every BNS lies across the union of circuits and from T14, we know that

the number of independent circuits in a cc is its circuit rank, c(cc). This

allows us to establish the maximum number of BNSs in a cc as the power set

of the cc’s circuit rank:

Theorem 27 The maximum number of BNSs in a cc equals the power

set of the circuit rank of the cc: Max # of BNSs = 2
c(cc)

“Thus, T26 sets the lower limit on the number of BNSs as a function of

the cc’s constraint potential and T27 sets the upper limit as a function of the

cc’s circuit rank,” the analyst concluded.

4. Regular Relations

89

Figure 4-15a. Demonstration of T26: the number of BNSs in a circuit cluster is equal or

greater than p(cc)+1.

“So what do you suggest a practical guy to do?” queried the manager.

“Constraint theory provides at least two complementary robust

procedures for locating the BNSs within the cc’s:

a) The brute force procedure which merely examines every submodel

within the cc and checks for p(submodel)=0, the definition of a

BNS.

b) The T25 procedure employing the fact that every BNS must be the

union of adjacent circuits.

 Constraint theory

90

Figure 4-15 b-d. In a circuit cluster with p(cc)>0, it is easy to determine the number of nodal

squares within it, but this does not lead directly to the number of basic nodal squares.

The brute force procedure develops the power set of the N relations --

each one being a submodel -- and tests for p(submodel)=0 and that there are

no submodels with p(submodel)=0 within it. There will be 2
N

such

submodels to test and the testing of each one is simple in the extreme. True,

we seem to be trapped again in an exponential number of trials but in general

the number of nodes in even the largest of circuit clusters will be far smaller

4. Regular Relations

91

than the number of nodes in the total model. For example, if the total model

had 100 relations, it would be very unusual to have a circuit cluster as large

as 30 relations. The computational advantage of performing brute force

testing within a cc rather than within the total model equals 2
100

/2
30

~ 10
21

 --

truly enormous! Assuming that each test can be accomplished in a

nanosecond, the brute force examination of each of the cc’s submodels

would require only a second.

The T25 procedure offers greater efficiency as the number of relations

within the cc grows much larger than 30. By definition, it makes use of the

fact that every BNS is the union of adjacent circuits. The first step in this

procedure is to develop the set of independent circuits within the cc, which

by T14 is equal to the cc’s circuit rank, c(cc). Then examine the submodels

which reside on these circuits -- including the twig knots which may be

attached -- one at time, then two at a time with adjacent circuits, then three at

a time with adjacent circuits, etc.. The disadvantage of this procedure is that

we must find the independent set of circuits and form the potential sets of

combinations of these circuits, before we test for zero constraint potential of

any of the submodels. The advantage of this procedure is that, instead of

searching through the power set of the N relations of the cc, we are searching

through the power set of the cc’s independent circuits. Assuming again that

N=30 and that c(cc)=6 (an average of 5 relations per circuit), then the

computational leverage is about 2
30

/2
6
, a factor of several million. Of course

this must be weighed against the additional “overhead” of forming the

independent set of circuits and its power set.

Generally speaking, it is judged the brute force procedure would be more

practical for cc’s with N<30 if it could be accomplished on the order of a

second. As N grows to 50 and beyond for the cc, it would become

increasingly attractive to employ the T25 procedure. (Refer to Fig 4.16).

4.6 LOCATING BNSs WITHIN A MODEL GRAPH

Let us now apply the definitions and theorems of the previous sections to

the challenge of finding BNSs within a model graph.

Definition 37: General procedure for locating BNSs in a model graph,

which involves the sequential application of these “sieves”: connected

components, tree structures, circuits, circuit clusters and constraint potential.

This procedure is outlined in the following steps a) – h) and illustrated

graphically, with a notional model graph, in Figures 4-16 through 4-21.

 Constraint theory

92

Step a) trims down the model by eliminating all nodes of degree one. These

twig nodes represent single-variable equations which can be solved

separately by employing the full model. Without this key topological

property, the cornerstone theorems (“ten easy pieces”) of constraint theory

could not have been proven. As a subset of the “ten easy pieces”, T-21

through T-25 are specifically employed in the D-37 process. As such, no

terminal nodes are allowed before the rules of constraint theory can be

applied. Not only are the terminal nodes trimmed from the model graph but

their incident edges, which would become “dangling”, must also be cleaned

up explicitly.

Once the relevant single variables (knots) of the above terminal nodes have

been determined, analytically or numerically, their values can be

incorporated into other relevant relations as coefficients. In effect, these are

1 × 1 BNS which only serve to clutter a multi-dimensional model and can be

temporarily eliminated. The solution time for this process is linear as each

and every node will be examined once, and only once, for checking of d(n) =

1 and removal as such. It should be clarified that the terminal nodes are only

temporarily eliminated, or hidden, for the purpose of topological

simplification while we are searching for other higher-order BNS in the

subsequent steps of D-37. Afterwards, these terminal nodes will still need be

re-integrated back into the original, complete model to check for possible

over-constraint among all BNS (Phan, pp. 101-104).

4. Regular Relations

93

Step b) decomposes the total graph into connected components by

employing graph theoretic concepts of spanning tree and full-spanning forest

to improve solution time over that of D-27. In particular, to identify each

component in a model graph, the widely-accepted depth-first search (DFS)

algorithm is used to grow a spanning tree. This algorithm was originally

devised by Tarjan (1974), and has been extensively referenced by Cormen et

al. (2001), Dechter (2003), Gross & Yellen (2006) and many others in the

literature. The DFS also lends itself naturally as an effective and efficient

application in steps (d) and (e) of D-37 and thus can even save more solution

time (Phan, pp. 104-114).

Figure 4-16. DFS algorithm used to decompose the BPG into two connected components.

 Constraint theory

94

Step c) discards those components without any circuit as identified in Step

(b) since, per T-25, purely tree-like structures cannot contain any BNS. D-31

stipulates computation of the circuit rank, c(G), for every component and

discard those with c(G) = 0. However, the inherent products coming out of

Step (b) include only those components with c(G) > 0. Thus, repeated

calculation of c(G) is not necessary (Phan, pp. 114-115).

Figure 4-17. Retain only the lower connected component with c(G) > 0.

4. Regular Relations

95

Step d) uses D-30 to trim repeatedly each spanning tree of every external

twigs, i.e. vertex with dC(v) = 1, since no BNS can exist in tree twigs by

T21. The symbol dC(v) is meant to emphasize the degree of a vertex within

the context of its parent component coming out of Step (c), and not that of

the spanning tree which is just a subgraph of the component. Even though

this step only operates on spanning trees, it is important to keep in mind that

the relative complement of each spanning tree must always be carried and

fully accounted for, as an imperative part of every component, to be

simplified and decomposed through every sequentially-related step within

the D-37 process (Phan, pp. 115-117).

Figure 4-18. D-30 used to trim external trees from a connected component with c(G) > 0.

 Constraint theory

96

Step e) can employ one of several methods to identify and remove all

internal trees from every spanning tree of each component coming out of

Step (d) since no BNS can exist within internal trees by T23 and T24. A

spanning tree will be decomposed into smaller spanning trees, corresponding

to newly-formed respective sub-components. The relative complement of

each resultant smaller spanning tree will also be automatically identified as

by-products. In an edge-centric method, a spanning tree needs to be grown

only once for a component to save solution time (Phan, pp. 117-122). Other

methods to determine internal trees include those by Tarjan, Cormen et al.

(pp.558-559) and Gross & Yellen (pp. 182-184).

Figure 4-19. All internal trees to be removed from a connected component with c(G) > 0.

4. Regular Relations

97

Step f) identifies separating vertices of every BPG coming out of Step (e)

and partitions its kissing circuits, or circuit clusters, at such points. D-28

stipulates a trial-elimination procedure with polynomial runtime of (V·E),

where V and E are the numbers of vertices and edges, respectively (Shirey,

1969). However, a more efficient DFS-based algorithm with linear runtime

can be used to separate kissing circuits and circuit clusters. The notion of a

separating vertex in Constraint Theory (D-26) is identical to that of a cut-

vertex, cut-point or articulation point in Graph Theory. And the structure of

a circuit cluster in Constraint Theory is the same as that of a biconnected

component in Graph Theory (Phan, pp. 123-143). For each partitioned

circuit cluster, if p(cc)>0 then the cc has at least p(cc)+1 BNS within it.

Figure 4-20. Kissing circuits and circuit clusters to be separated at articulation points.

 Constraint theory

98

Step g) can follow one of several methods to search for intrinsic BNS within

each cc coming out of Step (e). For smaller cc with N ≤ 14, the brute-force

approach is to examine its nodal power set, which would result in an

exponential solution-time of 2
N
 (Phan, 2011, p. 381). For larger cc, a more

efficient method for locating potential BNS is to examine only the fruitful

unions of overlapping nodes, either directly or transitively, i.e. avoiding

combinations of non-overlapping nodes. The search for BNS should also be

systematically implemented in a bottom-up approach, smaller nodal unions

before larger ones. As such, smaller nodal unions identified as BNS, or BNS

containers, can be tagged to not be re-used as components in the construction

of any larger union. Such a larger union can never be a BNS and should not

be unnecessarily constructed and examined (Phan, pp. 144-231).

Figure 4-21. Search for BNS among simple circuits and within circuit clusters.

4. Regular Relations

99

Step h) validates the potential BNSs located by step (g) in simplified circuit

clusters, which are isolated sub-graphs of the overall original model graph.

These potential BNS must still be validated, as complete sub-models, within

the context of a connected component of the model graph identified in step

(b). The validation process is implemented by re-integration of tree twigs

pruned in step (d), internal trees removed in step (e) and circuit clusters

decomposed at separating vertices in step (f) (Phan, pp. 323-325).

“Surely, for those not familiar with D37, there must be other ways of

managing high dimension models on computers”, insisted the manager.

“Yes, there are ways,” admitted the analyst. “But they require far more

attention by the people developing the model and programming it than one

would like in this world of highly computer-automated analysis that we like

to believe we’re in. A pragmatic approach would be to start with models

whose constraint potential is enormously negative -- which have perhaps a

100 or so fewer equations than variables. Then, once the computational

request is made known to the model manager, the potential computational

paths -- which started out under-constrained -- are examined to see where

variables can be set at constant values so that the constraint potential is

brought up to zero along the entire path. This would be very labor intensive

and fraught with the danger that the programmers would make these

‘constraint enhancing’ decisions without properly consulting those with the

responsibility of model fidelity. I have a very sad story in my past -- among

many others I’m certain -- wherein a programmer decided to add a key

constraint to the model without informing management, and as a result my

company lost a crucial contract we had worked on for years. Typically, the

math model results were presented to management with a minimum of

visibility.”

“Getting off the war stories for a moment,” said the manager changing

the subject, “doesn’t step f) of D37 leave us hanging a bit? It says that if

p(cc)>1 then the cc has multiple BNSs. What happens then?”

 “Thanks for the question,” the analyst said. “We have spent most of this

chapter on the issue of the location of BNSs but, as crucial as that is, it is still

only part of the job of math model management. It’s time to broaden our

sights to the whole problem.”

4.7 QUERIES FOR THE REGULAR STUDENT

1. Consider the following mathematical model of regular relations:

a = f1(c, d), h = f2(g, m, w), d = f3(r, g), c = f4(a), d = f5(c),

t = f6(r, s)

 Constraint theory

100

Is the model connected?

Is it tree-like, circuit-like or both?

What is the circuit rank of the model?

What is the constraint potential of the model?

Are there BNS’s in the model? If so, identify it (or them).

2. Consider the following mathematical model of regular relations:

x = f1(y), z = f2(w, y), y = f3(x), x = f4(y)

What is the circuit rank of the model?

What is the model’s constraint potential?

Are there circuit cluster(s) in the model? If so, identify it (or them).

Are there BNS’s in the model? If so, identify it (or them).

3. Consider the following math model of regular relations:

m = f1(r, p), n = f2(q, r), r = f3(m, n), q = f4(p, r)

Is there a circuit cluster in this model? If so, identify it.

What is the model’s circuit rank?

What is the total number of simple circuits in the model?

What is the number of independent circuits?

What is the model’s constraint potential?

4. Provide a shorter proof than that given in the text for Theorem 21,

using only the constraint matrix.

5. If “sc” refers to a simple circuit, prove that p(sc) = 0. If “nsc” refers

to a non-simple circuit, show examples how p(nsc) > 0 and p(nsc) <

0.

6. Prove that, in a circuit cluster, the number of independent circuits is

equal to or greater than the number of BNSs.

7. Draw the bipartite graph of a circuit cluster which is a nodal square

that contains two BNSs within it.

8. Draw the bipartite graph of two overlapping nodal squares which

share a single BNS within them.

9. There is an easy way to count independent circuits much of the time:

merely locate all the “white areas” inside the bipartite graph which

are completely surrounded by edges. Why will this method not

work in general?

Chapter 5 MODEL CONSISTENCY AND

COMPUTATIONAL ALLOWABILITY

5.1 ZERO CONSTRAINT ALL ALONG THE

COMPUTATIONAL PATH

Now that we have developed a general process to locate intrinsic BNSs,

we can return to the concepts expressed in Figure 4-7 and discuss the general

issue of constraint propagation through a connected graph of regular

relations. The general rule, as depicted in Figure 5-1, is compactly stated as:

In order for a computational request on a consistent model to be

allowable, the entire computational path, from independent variables and

constants to dependent variable, must have a resultant constraint potential

of zero.

If the resultant constraint potential exceeds zero at any point, the

computation is over-constrained; if the resultant constraint potential is less

than zero at any point it is under-constrained. It is possible for the same

computational request to be both over- and under-constrained -- at different

places along the computational path. In short, the resultant constraint

potential must be just right along the entire path. Thus, the designation: The

Goldilocks rule.

Referring to Figure 5-1, examine the nodes first. Recall that the local

degree of any node, d(N) is simply the the number of edges that intersect that

node. The intrinsic constraint potential of that node pi(N) is by definition N

K = 1 d(N). Now if constraint flows into this node from elsewhere in

the model, pi(N) will be increased by I(N), the number of edges which

propagate constraint into the node. The resultant constraint potential then

becomes:

 Constraint theory

102

pr(N) = pi(N) + I(N) = [1 d(N)] + I(N)

Let I(N) = d(N) 1; we see that this drives pr(N) to zero, and we have

just derived the “(d  1) in / 1 out” rule for nodes.

Figure 5-1. The Goldilocks rules for constraint flow through a network. In order for a

computational request to be allowable, the resultant constraint must equal zero at every vertex

and circuit along the computational paths from independent variables and variables held

constant to the dependent variable.

5. Consistency and Allowability

103

Next, examine the knots of Figure 5-1. The intrinsic constraint potential

of a knot is by definition: Pi(K) = N  K = d(K)  1. If this knot produces

O(K) outputs, then the resultant constraint potential of the knot is decreased

by O(K): pr(K) = pi(K) – O(K). Recognizing that O(K) + I(K) = d(K), we

see that setting O(K) = d(K)  1 will drive pr(K) to zero. Thus we have just

derived the “1 in / (d  1) out” rule for knots.

Finally, examine the circuits on the Figure 5-1 computational paths. As

we have seen above, if p(circuits) > 0, we will have multiple BNS and

therefore over-constraint on their common variables. On the other hand, if

p(circuits) < 0, then we will experience under-constraint. If p(circuits) = 0,

then a single BNS will provide constraint at all its variables, permitting the

flow of constraint though these circuits.

In summary, the “Goldilocks” rule stating the necessity of zero constraint

all along the computational path is a unifying concept for computational

allowability.

5.2 RECAPITULATION OF COMPUTATIONAL

FLOW

Let us attempt a recapitulation of what is involved in a computational

request at this point.

The first order of business is to determine the model’s consistency, for if

it is inconsistent then no computational request will be allowable. All

disconnected components and tree structures of universal relations are

intrinsically consistent. However, in circuit-like bipartite graphs there may

exist one or more BNSs which will exert intrinsic constraint on all of their

relevant knots. A single BNS merely restricts the number of computational

requests, but multiple BNSs often drive the model into inconsistency and

thus prevents all computational requests. These over-constraints must be

relieved before any computational requests can be entertained. Furthermore

the constraint flowing out of each BNS may intersect in a larger constraint

flow domain, and will also require relief by the model builders.

Once the model’s consistency has been established, computational

requests on it may be examined. The general format of these requests will

be: “Please compute the dependent variable X as a function of the set of

independent variables {Y}, with the set of {Z} variables held at the constant

values {Zo}.”

As part of the consistency check, the bipartite graph already has its

domains of intrinsic constraint mapped out. For each computational request,

add the extrinsic constraint sources due to the independent variables {Y} and

the variables held constant {Z}. The effect of applying extrinsic constraint

to the variables held constant {Z} will be to cause them to disappear from

 Constraint theory

104

the graph completely (the {Zo} constants will be “absorbed” into their

relevant nodes as parameters in their equations rather than variables). This

action will tend to simplify the model and sometimes even disconnect it,

making computations across disconnected components impossible. See

Figure 5-2.

Figure 5-2. Applying extrinsic constraint by holding some variables constant tends to simplify

the bipartite graph. Sometimes the graph is disconnected into separate components, rendering

computational requests involving variables in different components unallowable.

5. Consistency and Allowability

105

Next, start the flow of extrinsic constraint from each of the {Y}

independent variables into the remainder of the bipartite graph. Several

circumstances may occur, as is shown in Figure 5-3.

a) In the vicinity of tree structures, the (d  1) in / 1 out rule for

nodes and the 1 in / (d  1) out rule for knots will always be

sufficient to determine over or under constraint.

b) Even in the vicinity of some circuits, these rules will still be

sufficient.

c) On many occasions, the constraint will flow into a circuit

structure and appear to stop. But closer examination shows that

the constraint flow into a node effectively increases the resultant

constraint potential of the circuits, forming them into a resultant

BNS, which by applying constraint to all its relevant knots,

permits the constraint flow to continue.

d) Sometimes, the intrinsic and resultant BNSs reside in close

proximity.

See Fig 5-4 for examples of interactions in these cases.

5.3 GENERAL PROCEDURE FOR DETERMINING

CONSISTENCY AND ALLOWABILITY IN A

MODEL OF REGULAR RELATIONS

“Recall that in Chapter 1, the existence of a single BNS was an irritant;

you were disappointed that you couldn’t accomplish all the computational

requests you desired, but it didn’t drive the model into inconsistency,” the

analyst continued. However, the existence of overlapping BNSs will cause

the model to be intrinsically inconsistent; therefore no computations at all

are allowed. That is not just irritating, it’s devastating. Multiple,

overlapping BNSs are against nature.”

“My, my; in addition to being a dealer in hyperbole,” commented the

manager, “you’re waxing philosophical, too. What exactly do you mean by

‘against nature’?”

“I mean at least two related things,” responded the analyst, “which can be

captured in the following postulate:”

Postulate 2: First, the laws of physics and other descriptions of the

world are fundamentally consistent if they are fully understood, and second,

it is the intent of model builders to represent phenomena accurately and thus

if over-constraint occurs, it is unintentional.

 Constraint theory

106

Figure 5-3. Flow of constraint in the vicinity of trees and circuits.

“So, I was referring to the nature of the world as well as the nature of

model builders. Since the natural world itself is fundamentally consistent,

over-constraint is invariably contributed by the fragmented understanding of

the human model builders, either by inadvertently applying excessive

relations to the description of a phenomenon or, more frequently, adding too

5. Consistency and Allowability

107

many relations of policy, design rules, optimization criteria or desired

outcome.”

Figure 5-4. Examples of constraint flow in the vicinity of BNSs.

In order to bring a circuit cluster with p(cc) to consistency, at least p(cc)

nodes must be removed. In other words, of the N nodes in the cc, N  K of

them must be removed. From simple combination and permutation theory,

we conclude that there are N!/(NK)!K! ways to remove N  -K nodes from

the original N nodes. Unfortunately, these removals lie outside the domain

of Constraint Theory and require the group of human model builders who

contributed to the circuit cluster. Negotiations of the type discussed in

Chapter 1 will be required and the discussions could get tense. Better that

than having no working model at all!

 Constraint theory

108

We are now prepared to describe the procedure of determining

consistency and computational allowability in a bipartite graph of regular

relations:

Definition 38: General procedure for regular relations.

a) Locate the BNS by employing D-37. If no BNS found, including 1 ×

1 BNS (a twig node and its relevant knot) and c(G) = 0, the model is

inherently consistent. Skip steps (b) – (f), go to step (g).

b) If overlapping BNSs are found, eliminate nodes through negotiation

so that all remaining BNSs are non-overlapping.

c) Propagate constraint emanating from the BNSs to their resultant

constraint domains, employing T10: for nodes, d(n)-1 in and 1 out,

and for knots, 1 in and d(k)-1 out.

d) If any two of these resultant constraint domains overlap, determine

whether any knots are over-constrained. If so, by negotiation,

remove sufficient nodes to relieve the over-constraint.

e) After the resultant domains have expanded as far as T10 applies,

analyze the remaining graph for resultant BNSs, using D36. If new

BNSs arise, continue with T10 and then apply D36 again. Continue

until the constraint domains no longer increase.

f) If all the overlapping BNSs are reconciled and resultant constraint

domains expand without over-constraint, then the model is

CONSISTENT.

g) For each computational request, treat all independent variables and

variables held constant as extrinsic sources of constraint which are

added to the intrinsic sources of constraint developed above.

h) Propagate computational paths from all constraint sources

throughout the model employing the T-10 rules. If any knot or node

is over-constrained, the computational request is NOT

ALLOWABLE.

i) If the computational path does not reach the dependent variable, then

examine the residue for BNSs, using D36, and continue with T10,

followed by D36 as necessary until the computational path can go no

further.

j) If the path does not reach the dependent variable, or over-constrains

a knot or node, the computational request is NOT ALLOWABLE.

k) If the path reaches the dependent variable by employing all

independent variables, without either over- or under-constraint along

the way, then the computational request is ALLOWABLE. It is

acceptable to have local under-constraint elsewhere in the model. If

5. Consistency and Allowability

109

the dependent variable can be reached without having to propagate

the constraint externally imposed on one or more independent

variables, then the computation is UNALLOWABLE.

Steps (a) – (f) address the issue of model consistency, and steps (g) – (k)

that of computational allowability. The following sections of this chapter

will examine the above general procedure in more details, step by step, with

the goal of realizing the utility of Constraint Theory. D-37 and D-38 will be

further extended, refined and improved into a set of more effective and

efficient algorithms, ready for implementation. As important as these issues

are to discuss, they do not represent exponential explosions of computational

time.

5.4 DETECTION OF OVERLAPPING BNS

Step (a) of D-38 states that: “Locate the BNS by employing D-37. If no

BNS found, including 1 × 1 BNS (a twig node and its relevant knot) and

c(G) = 0, the model is inherently consistent. Skip steps (b) – (f), go to step

(g).“

Per T-25, all BNS exist within simple circuits or across clusters of

adjacent circuits. If a model graph G with circuit rank c(G) = 0, it has no

circuits within. As such, G contains only tree structures. By T-9, any set of

universal relations whose BPG has a tree structure is consistent. As a global

criterion, and a quick check, to distinguish between trees and circuit clusters,

T-13 asserts that “a connected model graph having V – E = 1 is a tree”. This

assertion comes directly from the definition of circuit rank (Phan, pp. 31-32).

Otherwise, after all the intrinsic BNS have been identified and validated

within the context of a connected component in step (h) of D-37, they need

be compared against one another for any direct over-lapping. To check for

over-lapping, a set of definitions and vectorial operations will be developed

and illustrated herein.

Definition 39: Two BNS are said to directly overlap if they share at least

one variable in common, i.e. the intersection of their knot sets is non-null. In

other words, the common variable(s) are said to be over-constrained (or

over-specified), which causes the parent model graph to be inherently

inconsistent.

Figure 5-5 illustrates a model graph G and its constraint matrix CG].

Within G, three intrinsic BNS can be identified:

 Constraint theory

110

 BNS #1 consisting of nodes 6 and 7, and their relevant knots e and f.

 BNS #2 consisting of nodes 1 through 6, and their relevant knots a

through f.

 BNS #3 consisting of nodes 1 through 5, and 7, and their relevant

knots a through f.

Since these intrinsic BNS overlap one another, i.e. sharing and thus over-

constraining at least one common variable, G is inherently inconsistent and

no computational requests made on G are allowable.

Figure 5-5. Inherently inconsistent model graph with multiple intrinsic BNS

overlapping one another.

Definition 40: The characteristic vector (or charvec) of a BNS is the

union, based on the bitwise inclusive OR operation, of all the charvecs of its

nodes (see Definition D-9 for charvec, and Definition D-10 for bitwise

inclusive OR). Symbolically,

 charvec(BNS) = 
||

1

)(
BNSN

i

incharvec


 (5 – 1)

5. Consistency and Allowability

111

In the constraint matrix CG] of Figure 5-5,

Definition 41: The BNS matrix of a bipartite graph G, denoted G, is

the rectangular array of binary numbers whose rows correspond to the BNS

and columns correspond to the knots in G. In G, the entry ei, j = 1 if knot kj

 KG has been specified by BNSi, and 0 otherwise.

Figure 5-6 presents the BNS matrix G for the example BPG in Figure 5-

5. Note that each row of G represents the characteristic vector of the

corresponding BNS.

charvec(BNS1) = charvec(n6) U charvec(n7) = (0, 0, 0, 0, 1, 1)
charvec(n6) = (0, 0, 0, 0, 1, 1)

charvec(n7) = (0, 0, 0, 0, 1, 1)

charvec(BNS2) = charvec(n1) U . . . U charvec(n6)

 = (1, 1, 1, 1, 1, 1)

charvec(n1) = (1, 1, 0, 0, 0, 0)

charvec(n2) = (1, 0, 1, 0, 1, 0)

charvec(n3) = (0, 0, 1, 1, 0, 0)

charvec(n4) = (0, 1, 0, 1, 0, 0)

charvec(n5) = (0, 0, 0, 1, 0, 1)

charvec(n6) = (0, 0, 0, 0, 1, 1)

charvec(BNS3) = charvec(n1) U . . . U charvec(n5) U charvec(n7)

 = (1, 1, 1, 1, 1, 1)

charvec(n1) = (1, 1, 0, 0, 0, 0)

charvec(n2) = (1, 0, 1, 0, 1, 0)

charvec(n3) = (0, 0, 1, 1, 0, 0)

charvec(n4) = (0, 1, 0, 1, 0, 0)

charvec(n5) = (0, 0, 0, 1, 0, 1)

charvec(n7) = (0, 0, 0, 0, 1, 1)

 Constraint theory

112

a b c d e f

0 0 0 0 1 1

1 1 1 1 1 1

1 1 1 1 1 1

Knots

BNS1

BNS2

BNS3

Figure 5-6. BNS matrix G of BPG in Figure 5-5.

Definition 42: The overlapping factor between BNSi and BNSj, denoted

as i, j, is defined as the dot product between their characteristic vectors.

Symbolically,

 i, j = charvec(BNSi) ● charvec(BNSj) (5 – 2)

Furthermore, by definition of dot product, the overlapping factor i, j also

indicates the number of common variables (knots) over-constrained by the

two BNS.

Theorem 28: BNSi and BNSj are overlapping if i, j ≥ 1. They are not

overlapping if i, j = 0.

Proof: If two BNS share any common knot in ki then the corresponding

i
th
 elements in both of their respective characteristic vectors are equal to one.

Therefore, the dot product between their characteristic vectors must be equal
to one, or larger, if there are one, or more, common knot between the BNS.
QED

In Figure 5-6, 1, 2 = charvec(BNS1) ● charvec(BNS2) = (0, 0, 0, 0, 1, 1

) ● (1, 1, 1, 1, 1, 1) = 2. Thus, BNS1 and BNS2 overlap by two variables,

which confirms a visual inspection of Figure 5-5. This technique of

employing dot product provides a quick check for potential overlapping

between two BNS. Once any overlapping has been confirmed, the over-

constrained variables can be identified via an element-by-element

comparison between the BNS charvecs.

Definition 43: Algorithm to detect overlapping BNS in a model graph

and to identify variables commonly shared among them.

Input: A matrix G with R rows and K columns representing all

BNS in a graph G.

5. Consistency and Allowability

113

 Output: A subset S  KG consisting of overlapped knots (over-

constrained variables).

 Initialize S = Ø.

 For i ranging from 1 to (R – 1)

 For r ranging from (i + 1) to R

 If i, r ≥ 1

 For j ranging from 1 to | KG |

 If the j
th
 element of BNSi = that of BNSr = 1

 Add the corresponding knot kj to S.

 Return S (if S ≠ Ø, the model is inconsistent).

Theorem 29: To detect overlapping BNS and identify over-constrained

variables using a matrix G with R rows and K columns representing all

BNS in a model graph G, the required solution time will be:

 detection = K (R
2
 – R/2) ~ K ∙ R

2
 (5 – 3)

Proof: The matrix G has R rows representing all BNS and K columns

representing knots (variables) in G. There are (R – 1) + (R – 2) + . . . + 2 + 1

= R
2
 – R/2 pairwise comparisons of BNS. For each pairwise comparison of

BNS, all K columns must be examined to look for commonly shared, and

thus over-constrained, variable(s) between the two corresponding BNS.

QED.

The above algorithm needs be applied to all BNS, including those 1 × 1

BNS born of terminal nodes initially trimmed by step (a) of D37 process

defined in Section 4.6. Figure 5-7 illustrates an example model graph back

into which a previously trimmed terminal node (nodal twig) is re-integrated

as a 1 × 1 BNS. This re-integration reveals knot c as over-constrained

between BNS1 = { 3, c } and BNS2 = { 1, c, 2, b }.

 Constraint theory

114

1

2

3 c b BNS2

BNS1

Re-integrated terminal node

Figure 5-7. Re-integration of previously trimmed terminal node reveals

model inconsistency

At this point in the process, the model builder needs to examine the set of

over-constrained variables output by the algorithm in Definition 43. Any

inconsistency, i.e. directly overlapping intrinsic BNS, inherent within the

model graph must be resolved before proceeding with the D-38 process. This

requirement for reconciliation has been established in steps (b) and (d) of D-

38.

5.5 RELIEF OF OVER-CONSTRAINT

Steps (b) and (d) of D-38 aim to relieve over-constraint inherent within a

model graph by eliminating nodes in overlapping BNS. In their current form,

the procedures for these steps state:

b) If overlapping BNS are found, eliminate nodes through

negotiation so that all remaining BNS become non-overlapping.

d) If any two of these resultant constraint domains overlap,

determine whether any knots are over-constrained. If so, by

negotiation, remove sufficient nodes to relieve the over-

constraint.

However, the removal of relations in their entirety from a model could be

a bit offensive to the stakeholders who have contributed the relations to the

model. This contribution represents their voice, their “piece of the pie”, into

the system design process. The exclusion of such input might not be

5. Consistency and Allowability

115

practical or feasible in some instances, especially when this is the voice of

the resource sponsor or policy maker who funds the project.

A less dramatic approach, and perhaps a more productive negotiation, to

achieve buy-in from the affected stakeholder(s), would be to adjust some

relations, rather than a total elimination of them. One possible technique

would be to parameterize some constant coefficients to variables.

Mathematically, the effect on p(G) should be identical, whether we remove a

node from, or add a knot to a model graph. Such an adjustment technique,

previously discussed in Section 1.3, could be employed as an alternative to

steps (b) and/or (d) above.

Let’s examine the example BPG of Figure 5-8, an inherently inconsistent

model with two indirectly overlapping BNS. By adding a knot to the over-

constrained node 5, the model now becomes inherently consistent. However,

no computational request can be made on this extended model yet because it

is perfectly constrained, consisting of two intrinsic 2 × 2 BNS and one

resultant 1 × 1 BNS. In order to entertain any computational request, another

knot needs be added to the BPG.

The above technique of extending adjustment to a BPG does not only

allow more flexibility in system modeling and simulation for the model

builder, but also facilitates thoughtful inquiry and cooperation among the

systems engineering and program management team to expand the trade

space in systems design.

5.6 EXPANSION OF RESULTANT CONSTRAINT

DOMAINS

After all inherent over-constraints have been resolved by the model

builder (with the aid of above method to detect directly overlapping BNS),

those “variables” identified as parts of an intrinsic BNS have essentially

become internal point-constraints per T-11. Their pre-determined values

must now be propagated throughout the graph network to form constraint

domains. This flow of constraint will fix other knots along the propagation

path, and may even result in additional BNS. If two constraint domains share

at least one common variable, they are said to be overlapping. In other

words, the commonly-shared variable(s) are over-constrained. As illustrated

in Figure 4-7, this phenomenon has been briefly discussed. As such, a

constraint domain is now formally defined.

 Constraint theory

116

Definition 44: Let G be a model graph, and H be an intrinsic BNS

within G, i.e. H is a subgraph of G. The constraint domain emanated from

H is the maximum knot-set that includes KH and all other knots in KG which

are also fixed as a result of constraint propagated from KH throughout G.

Figure 5-8. Adding knots to BPG relieves over-constraint and allows for

computational requests

1

2

a

3

4

d b 5 c

(b) Addition of knot e relieves over-constraint and renders BPG inherently consistent

1

2

a

3

4

d b 5 c
Intrinsic

BNS #1

Intrinsic

BNS #2

(c) Addition of knot f allows some computational requests made on BPG.

1

2

a

3

4

d b 5 c
Intrinsic

BNS #1

Intrinsic

BNS #2

(!)

(a) Inherently inconsistent BPG with two intrinsic BNS over-constraining node 5.

e

e

f

Resultant

1 × 1 BNS

5. Consistency and Allowability

117

It must be emphasized that constraints may flow out of a BNS even

further than the Duality Rules (T-10) imply. Even though the Duality Rules

only work around tree-like structures, constraint can propagate through both

tree-like and circuit-like structures. In tree-like structures, the Duality Rules

can be applied very rapidly, but they will likely bog down in the vicinity of

circuit structures where the BNS are hiding. It is quite possible that once a

constraint domain is expanded as far as the Duality Rules allow, new

resultant BNS may be formed. With all the knots reached by the Duality

Rules now fixed (no longer “variables”), the remainder matrix can be used to

search for more resultant BNS. Subsequently, the Duality Rules can be

employed again to re-start constraint propagation from the newly discovered,

and validated, resultant BNS. This expanded process, beyond the Duality

Rules, has been termed the Goldilocks Rule to manage constraint flow

through both tree-like and circuit-like structures. A constraint domain can

certainly expand even beyond the circuit cluster in which the BNS reside, as

far as its parent connected component will allow.

Figure 5-9 illustrates a model graph with several constraint domains. On

the left-hand side, constraint flows from three intrinsic BNS into neighboring

sub-graphs, which results in two additional BNS. The path of constraint

propagation runs along the bold edges. On the right-hand side, each resultant

constraint domain is shown to consist of its intrinsic BNS and the maximum

sub-graph expanded by propagating constraint from the intrinsic BNS. Note

that a constraint domain may not only contain BNS, which are simple

circuits or unions of adjacent circuits, but also tree structures. This is the

case with constraint domain #2 below. All variables within a constraint

domain have been pre-determined (fixed) even before any computational

request is made on the model.

 Constraint theory

118

 (a) Intrinsic BNS and neighboring resultant BNS (b) Constraint domains

within model graph.

Figure 5-9. Model graph with intrinsic BNS and resultant constraint

domains

Also note that any interface between a sub-graph which represents a

constraint domain and the remainder of a model graph is through the knot set

of the sub-graph. In other words, a constraint domain can be considered as a

maximum complete sub-model all of whose variables have been inherently

fixed. To expand the resultant constraint domain within a connected graph,

the following algorithm refines steps (c) – (f) of D-38 with more details.

Definition 45: Procedure to expand the constraint domain Kcd from a

BNS within a connected graph G.

1) Per step (c) of D-38, propagate constraint from each and every knot of

the source BNS by employing the Duality Rules of T-10 to the farthest

extent possible within G.

Intrinsic

3 × 3 BNS

Constraint domain #3

Intrinsic

2 × 2 BNS

Resultant

2 × 2 BNS

Intrinsic

2 × 2 BNS

Resultant

4 × 4 BNS

Constraint

domain #1

Constraint

domain #2

5. Consistency and Allowability

119

a. For each knot discovered along the constraint flow path, add it to

Kcd.

b. For each vertex along the path, including the source BNS, remove it

from G via a vertex-deletion operation (Phan, pp. 101-102). This

may fragment the remainder graph into several disjoint connected

sub-graphs as evidenced from Figure 5-9. As a quick check for this

fragmentation, or disconnectivity, of the remainder graph, Friedman

[1967, p. 91] has proven that “a model graph with V vertices and

more than  42V – V + 2 edges is connected”.

c. If any over-constraint encountered during propagation, then G is

inherently inconsistent. Employ technique(s) outlined in Section 5.5

to relieve local over-constraints.

d. Re-process G through steps (a) – (h) of D-37 to identify a new set of

intrinsic BNS since the model topology may be unpredictably

altered as a result of step (c). Also repeat steps (1a) – (1c) after the

new set of intrinsic BNS has been validated.

2) Per step (e) of D-38, locate potential resultant BNS, and possibly

continue expanding the constraint domain further, by re-processing the

remainder subgraph(s) through steps (a) – (h) of D-37.

a. To facilitate computation, a vertex-deletion subgraph can be

represented by a remainder matrix (see Definition 46 below).

b. Re-apply the algorithm outlined in Definition 43 to detect

overlapping among newly located BNS and to assist the model

builder to resolve any inherent over-constraint among them.

c. Similarly to steps (1c) and (1d) above, if G is altered to relieve any

local over-constraint among the newly located BNS, it must be re-

processed through D-37.

d. Resume propagation of constraint from resultant BNS by re-iterating

steps (1) – (2c) until no more BNS can be located. As such, Kcd has

reached its maximum and cannot expand any farther.

3) Repeat steps (1) – (2) for each and every intrinsic BNS within G to

define its respective constraint domain.

4) Per step (d) of D-38, re-apply the algorithm outlined in Definition 43 to

detect overlapping among the constraint domains defined in step (3).

a. If any overlapping detected, then G is inherently inconsistent.

Employ technique(s) outlined in Section 5.5 to relieve over-

constraints.

 Constraint theory

120

b. If G is altered to relieve any overlapping among the constraint

domains, it must be re-processed through steps (a) – (h) of D-37.

Also re-iterate steps (1a) – (4a) above.

5) By step (f) of D-38, upon successful completion of step (4b) without any

more overlapping among the BNS or among their resultant constraint

domains, G can be concluded as an inherently consistent model graph.

Definition 46: The remainder matrix representing a vertex-deletion

subgraph H, denoted as H, of a model graph G is defined as the constraint

matrix CG] less the rows and columns corresponding to the nodes and

knots, respectively, which have been fixed within a constraint domain and

thus removed from G.

Figure 5-10 graphically demonstrates an application of the high-level

algorithm outlined in Definition 45 above.

 After the “kissing” circuits and circuit cluster of original model

graph G have been separated at knots b and d by step (f) of D-37,

intrinsic BNS1 = { 1, a, 2, b } and BNS2 = { 7, d, 8, g } can be

identified by step (f).

 Upon removal of BNS1 and BNS2 from G, the D-37 process is re-

applied to vertex-deletion subgraph H. Again, its “kissing” circuits

are separated at knot f via step (f) of D-37. And this separation

results in BNS3 = { 3, c, 4, f } and BNS4 = { 5, e, 6, f } by step (g) of

D-37.

 Note that BNS3 and BNS4 over-constrain knot f, which can be

subsequently detected by applying the algorithm in Definition 43.

5. Consistency and Allowability

121

Figure 5-10. Removal of intrinsic BNS and repeating D-37 locate

resultant BNS

Step by step, Figure 5-11 below demonstrates another application of the

algorithm in Definition 45 by employing the example BPG of Figure 5-8:

 The flow of constraint is started from knot b of the intrinsic BNS, as the

source of internal constraint, into node n5. The vertices of this source

BNS are removed from the model graph via a vertex-deletion operation

(Phan, pp. 101-102) to simplify the graph during propagation.

 By the T-10 rule of d(n) – 1 in and 1 out for nodes, constraint continues

to flow from n5 into knot c, after which n5 is removed to further reduce

the graph.

 By the T-10 rule of 1 in and d(k) – 1 out for knots, constraint can

simultaneously flow from c into n3 and n4. However, as a matter of

practical implementation, the branches of propagation needs be executed

one of a time, in a single thread of execution. Parallel threads of

execution for multiple branches may result in various issues with

concurrency, e.g. unpredictable racing condition. And it would be

f b a

1

2

Intrinsic

BNS1

f

c

3

e

6 5

4

Original model graph G with intrinsic BNS1 and BNS2.

Removal of BNS1 and BNS2 from G results in vertex-

deletion subgraph H and reveals BNS3 and BNS4.

g

7

1

8

2

Intrinsic

BNS2
d

Resultant

BNS3

Resultant

BNS4

c

3

e

6 5

4

 Constraint theory

122

difficult, if not impossible, to maintain (configuration control over) the

state of the remainder matrix when it may be modified by several threads

of execution. As such, for the purpose of demonstration herein, we will

just trace through one branch of constraint flow from c to n3.

 As knot c is removed to further simplify the graph, the vertex-deletion

operation stipulates that all edges incident upon c must also be removed.

And this includes the edge between c and n4 (Phan, pp. 101-102).

 Again, by the T-10 rule of d(n) – 1 in and 1 out for nodes, constraint

continues to flow from n3 into knot d, after which n3 is removed to

reduce the graph even further.

 Again, by the T-10 rule of 1 in and d(k) – 1 out for knots, constraint can

propagate from d to n4.

 Without any outlet from n4, the flow of constraint stalls here. Remember

that the edge between n4 and c has already been deleted above, and no

longer exists in the remainder matrix. This violates the T-10 rule of d(n)

– 1 in and 1 out for nodes. Therefore, the original model can be

concluded as inherently inconsistent, and no computational requests can

be made on it.

The procedure outlined in Definition 45 and demonstrated above should

have better efficiency in terms of both run-time and space-bound than steps

(c) – (f) of D-38 in their current form. The removal of every vertex

discovered along the constraint propagation path can repeatedly simplify the

model graph, and thus reduce the size of the remainder matrix further and

further. As such, the computational load for subsequent iterations will

require less and less CPU time and memory resources.

5. Consistency and Allowability

123

Figure 5-11. Violation of the d(n) – 1 in and 1 out rule for nodes exposes an

inherently inconsistent model

1

2

a

3

4

d b 5 c
Source

BNS

1

2

a

3

4

d b 5 c
Source

BNS

1

2

a

3

4

d b 5 c
Source

BNS

1

2

a

3

4

d b 5 c
Source

BNS

Constraint flows from b into n5,

source BNS is deleted from G.

Constraint flows from n5 into c,

n5 is deleted from G.

Constraint flows from c into n3,

c is deleted from G.

Constraint flows from n3 into d,

n3 is deleted from G.

(!)

 Constraint theory

124

5.7 PROCESSING OF COMPUTATIONAL

REQUESTS

“As we observed from Chapter 1 and even more in Appendix A, even

though the model may be consistent, the probability that any given

computational request will be allowable is still very small,” remarked the

manager. “Can constraint theory assist the math model manager in steering

him to those computational requests which are allowable?”

“Certainly,” the analyst assured. “We can consider another ‘brute force’

approach here, where constraint theory can theoretically examine all the

possible 2
K
 computational requests. But, as we have already seen, 2

N

computations are really out of the question and 2
K

would be roughly the

same size.”

“We can enormously reduce the number of computational requests to be

analyzed by noting two things,” the analyst continued. “First, the cognitive

limitations of any human attempting to understand a result from a math

model are limited to ‘view spaces’ whose dimensionality ranges from 2 to 5

at the most. So the 2
K
 computations are reduced to ~K

5
 -- a tremendous

reduction. Second, not all the K variables are equally interesting or

important; for large models, probably only a few percent of the total number

of variables would be considered as providing a ‘system level’ overview.

We can take a hint as to which are the most interesting (or valuable)

variables by just looking at the computational requests which were

disallowed. Assume for example that a failed computational request

involved the variables a,c,f,m. We could then ask D38 to examine all

combinations of three of these and any other of the K  4 variables, and two

of these and any two other of the K  4 variables, and finally any one of

these and any three other of the K  4 variables. This amounts to less than

4K
3

examinations, which is over a million possible computational requests

but can be computed by D38 in just a few minutes. This should provide the

manager with many computational requests which are in the ‘vicinity’ of the

one he wanted and couldn’t have.”

Given an inherently consistent model graph by steps (a) – (f) of D-38, we

are now ready to examine in further details the general procedure for

processing computational requests as outlined in steps (g) – (k).

5.7.1 INITIAL SIMPLIFICATION OF MODEL GRAPH

We can again leverage T-11 to simplify a model graph before

entertaining any computational request made upon it. Since all the knots

belonging to a resultant constraint domain, previously identified by the

method outlined in Definition 45, have been internally fixed in values, they

5. Consistency and Allowability

125

can no longer be manipulated as part of any computational request.

Therefore, the sub-graphs spanning the various constraint domains can be

removed from the overall model, via a vertex-deletion operation (Phan, pp.

101-102) after step (f) and before step (g) of D-38.

This reduction can be safely implemented without losing any essential

information in determining the allowability of any computational request, or

the processing of an allowable request. Within the framework of such a

reduced graph, one can avoid many repetitious and unnecessary calculations.

And computational complexity can be exponentially lessened in terms of

both run-time and memory-space requirements. This improvement in

efficiency follows the same concept as presented in step (1b) of Definition

45 where vertices discovered along a constraint flow path are removed

during propagation of internal constraint.

Figure 5-12 illustrates above simplification technique. Upon the removal

of the intrinsic BNS = { 2, 3, 4, c, d, s } which just happens to be the same as

its resultant constraint domain in this case, model graph G is reduced to sub-

graph H. All computational requests made on G can be evaluated with the

remainder matrix associated with H. Any request involving c, d or s, as

dependent or independent variables, can be readily concluded as unallowable

since their corresponding knots  KH. This immediate determination will

help avoid the unnecessary propagation of constraint as stipulated by steps

(h) – (j) of D-38. Allowability of other requests, as well as the processing of

all allowable requests, can also be computed more efficiently in H than in G

by the fact that | VH | ≤ | VG | and | EH | ≤ | EG |.

By T-7, the number of possible computational requests on a model with

K variables is equal to 2
K
. In the above simple example BPG, with | KG | = 8,

there would have been 2
8
 = 256 computational requests that could be

possibly made on G. With | KH | = 5, however, the number of possible

computational requests on H is now only 2
5
 = 32, an order of magnitude less

than that on G. For real-world models involving hundreds, if not thousands,

of variables, the reduction in computational complexity would be even more

significant.

Another advantage of the above simplification technique is that the

removal of sub-graphs spanning various constraint domains may also break

up a BPG into several disjoint connected components. In such cases, a

computational request involving variables not all of which belongs to the

same connected component can also be quickly determined as unallowable

 Constraint theory

126

without having to propagate needlessly throughout the graph network. This

is in accordance with T-5.

5.7.2 SIMPLIFYING MODEL GRAPH DURING

CONSTRAINT PROPAGATION

To evaluate allowability of a computational request made on a model,

steps (h) and (i) of D-38 repeatedly apply the Duality Rules of T-10 and the

BNS search process of D-37 to propagate constraint throughout its graph

network. In their current form, the general procedures for these steps state:

h) Propagate computational paths from all constraint sources throughout

the model employing the T-10 rules. If any knot is over-constrained, the

computational request is not allowable.

i) If the computational path does not reach the dependent variable then

examine the residue for BNS, using D-37, and continue with T-10,

followed by D-37 as necessary until the computational path can go no

further.

For computational requests with multiple independent variables as input,

the processing should initiate the propagation of constraint externally applied

to one independent variable at a time in a single thread of execution, and

complete the D-38 procedure as far as T-10 and D-37 will allow before

starting propagation of constraint from another independent variable. To

maintain flow control, independent variables should be processed

sequentially one at a time. If several independent variables are processed in

parallel, their computational paths may unknowingly collide with

unpredictable results. Given that, as vertices are discovered one by one along

the computational path originated from one independent variable, they can

be dynamically removed from the BPG by a vertex-deletion operation (Phan,

pp. 101-102). In several ways, this reduction can simplify computational

complexity, and thus improve efficiency of the iterative process stipulated by

steps (h) and (i) of D-38. The operational benefits include:

 With the ever-reduced remainder matrix, the D-37 process to locate

resultant BNS can only execute faster and faster, and require less

and less computer memory resource with each subsequent iteration,

than processing the entire model graph each and every time. The

same can also be said of the T-10 process to propagate constraint.

5. Consistency and Allowability

127

Figure 5-12. Removal of BNS simplifies a model graph before processing

any computational request

4

3 2

d

c

e

m

1

t

5

a

6

p

Intrinsic 3 × 3BNS

s

Model graph G

e

m

1

t

5

a

6

p

Vertex-deletion sub-graph H

Removal of intrinsic BNS from G

results in simplified sub-graph H.

 Constraint theory

128

 Deletion of vertices may break up the BPG into several disjoint

connected components. Before initiating another path of propagation

from the next independent variable, a quick and easy check can be

performed to verify this independent variable as belonging to the

same component as the dependent variable. If not, it can be readily

concluded that the computational request is not allowable per T-5.

This immediate determination will help avoid the repetitive and

unnecessary propagation of constraint from this independent

variable, as well as others subsequently.

 If the computational path initiated from one independent variable

discovers the knot associated with another independent variable,

then the request can be immediately rendered as unallowable.

Theorem 30: If the constraint flow path originated from an independent

variable x1 as input to a computational request discovers, by the Duality

Rules of T-10 for propagating constraint throughout a graph network, the

knot associated with another distinct independent variable x2 of the same

request, then the request is not allowable.

Proof: Independent variable x2, as input to the computational request just

as x1, will also be externally constrained by definition. If x2 lies on the

computational path originated from x1 then x2 is over-constrained once the

flow of constraint from x1 flows into it. This violates the propagation rule of

“1 in and d(k) – 1 out” for knots under T-10. Over-constraint on x2 causes

the model to become inconsistent. And no computational request on an

inconsistent model is allowable per T-1.

5.7.3 UNALLOWABLE COMPUTATIONAL

REQUESTS

Steps (h) and (j) of D-38 have pointed out two possible scenarios in

which a computational request becomes unallowable due to over-constraint

of a knot along the computational path. The following sub-sections will

discuss other classes of unallowable computational requests.

5.7.3.1 OVER-CONSTRAINT OF NODES

For a given computational request, there may exist multiple possible

computational paths, depending on the order (or sequence) of propagating

externally-applied constraints. Per T-10, a node along a computational path

will become over-constrained (or under-constrained) if the propagating rule

5. Consistency and Allowability

129

of “d(n) – 1 in and 1 out” for nodes is violated. Accordingly, such a

computational request may also be rendered as unallowable.

Figure 5-1 graphically illustrates this situation. If the two constants in the

bottom half of the graph are propagated first, then knots d and g will be

discovered as over-constrained as stipulated by steps (h) and (j) of D-38. At

this time, the procedure can be halted and the computational request declared

unallowable. However, if the two independent variables in the top half of the

graph are applied first as external constraints, then node a will be discovered

as over-constrained. Accordingly, the same computational request can also

be rendered unallowable and the procedure immediately halted.

5.7.3.2 RELEVANCY OF DEPENDENT VARIABLES

Step (k) of D-38 states that: “If the path reaches the dependent variable

by employing all independent variables, without either over- or under-

constraint along the way, then the computational request is allowable. It is

acceptable to have local under-constraint elsewhere in the model. If the

dependent variable can be reached without having to propagate the

constraint externally imposed on one or more independent variables, then the

computation is unallowable”.

Per the following concepts in Constraint Theory, another class of

unallowable computational requests involves extra independent variables

whose externally-applied constraints are not necessarily used to reach the

desired dependent variable.

Definition 9 (p. 34): “y is a relevant variable with respect to relations  in

xyz space means that there exist lines in xyz space parallel to the y-axis that

are neither entirely within nor entirely outside of the relation set. Thus, y has

an effect on , or equivalently, the relation p constrains y”.

Definition 14 (p. 40): “a computational request on a model is allowable

means that the projection of A onto the view space of the computation

contains at least one point and, in addition, each variable involved in the

computation must be relevant to this projection in the sense of Definition 9”.

It has been previously illuminated and asserted (pp. 40, 45) that: “If the

projection has variables that are not relevant, these variables take on all their

possible values, and are therefore under-constrained. Allowability requires

that all the variables of the requested computation be relevant to the

projection of the total relation onto the computational sub-space.”

 Constraint theory

130

Let’s consider the computational request e = f1(m, t) made on sub-graph

H of Figure 5-12. Figure 5-13 illustrates the propagation of constraints

externally imposed on the independent variables m and t (highlighted with

double squares). As knot m is initially fixed, its constraint flows into node 6,

resulting in a 2 × 2 BNS. In turn, this resultant BNS fixes knots a and e, and

the computational request is thus completed. It was not necessary, or useful,

to propagate the external constraint imposed on t. Had the constraint on t

been propagated first (before that on m), the computational path would never

pass node 1 to reach e. Violating the “d(n) – 1 in, 1 out” rule for propagating

constraint through nodes, node 1 would have been under-constrained.

Therefore, this computational request is not allowable since t is irrelevant in

determining e. In other words, e can be sufficiently determined without t.

Figure 5-13. All independent variables must be relevant for a computational

request to be allowable

Per T-2, over-constraint must not exist anywhere in the model, for a

computational request to be allowable, since any sub-model inconsistency

would “poison” the entire model. However, it is acceptable to have locally

under-constrained vertices outside of the computational path. For example,

in Figure 5-14, the computational request m = f2(a) is allowable even though

variables p and t are locally under-constrained elsewhere.

e

m

1

t

5

a

6

p

Resultant

BNS

Independent variable

Independent variable

Dependent variable

5. Consistency and Allowability

131

Figure 5-14. Locally under-constrained vertices outside of the

computational path are acceptable

5.8 SUMMARY OF CHAPTER AND CONSTRAINT

THEORY TOOLKIT

The computational rules used in Chapter 1, “d(n)  1 in and 1 out” for

nodes and “1 in and d(k)  1 out” for knots, as well as the “BNSs being the

kernel of constraint” were formally sanctified from the viewpoint of the

math model’s being a set of relations within the multidimensional space

defined by the model’s variables. All these results were seen to be aspects of

the Goldilocks rule which stated that computational allowability requires that

the resultant constraint along the entire computational path from independent

to dependent variables be exactly zero.

The exhaustive search for BNSs requires 2
N
 examinations of math model

relation subsets; even for moderate model sizes of N = 100, thousands of

universe lifetimes are required, even for nanosecond examinations.

Instead, D-37 can locate the BNSs in only seconds instead of trillions of

years. This is done by analyzing the topology of the BNSs which are

imbedded within the topology of the bipartite graph meta-model, employing

easily computed features such as connectedness, tree-ness, circuit rank and

constraint potential. A key result is the proof that, if there is a BNS within a

bipartite graph, it can only exist within a circuit cluster (cc) and if the

Node 1 local under-constrained

outside of computational path

e

m

1

t

5

a

6

p

Independent variable

Dependent variable

 Constraint theory

132

constraint potential of that circuit cluster p(cc) is equal or greater than zero,

then that circuit cluster contains p(cc) + 1 BNSs. See Figure 5-15.

Once the BNSs are located, the model consistency and computational

allowability are easily determined, as is summarized in Tables 5-1 and 5-2,

the Constraint Theory Toolkit.

Figure 5-16 demonstrates a typical scenario for the flow of constraint

across a small bipartite graph model.

The many definitions and theorems of Chapters 4 and 5 may appear

onerous but they are necessary to establish the rules of D-37 and D-38 as

applicable to any mathematical model of any size. This is a demonstration

of the power of generalizability of mathematics. We start in tiny domains of

low dimension which we can comprehend, and then extend our

understanding and tools to dimensions of any size. As large as the numbers

2
N

and 2
K

are, the number of possible topologies of a bipartite graph is

unimaginably larger: 2
NK

.

5. Consistency and Allowability

133

Figure 5-15. By employing easily computed topological properties of a model's bipartite

graph, consistency and allowability checks can be reduced from universe lifetimes to seconds.

 Constraint theory

134

Figure 5-16. A walk through the trees and tangled clusters.

5. Consistency and Allowability

135

Table 5-1. Constraint Theory Toolkit (Part I).

To Determine Mathematical Model Consistency:

Organize the set of regular relations and their relevant variables into a bipartite

graph (BPG) metamodel with two types of vertices:

 Nodes (N) which represent relations, and Knots (K) which represent

variables

 Edges connect relations (nodes) to their relevant variables (knots); a BPG

with undirected edges represent the math model; a BPG with directed edges

represents the computation

 The degree of a vertex, d(v) is the number of edges which intersect that

vertex.

Employ the companion Constraint Matrix (CM) to communicate with computer

analysis.

The constraint propagation rules across a BPG are:

 for nodes: d(n)-1 edges flowing into the node, 1 edge flowing out.

 for knots: 1 edge flowing into the knot, d(k)-1 edges flowing out.

Propagate connectivity along BPG edges (or CM dots) to determine connected

components.

 If K+N-E=1 in a connected component, it is tree-like; no intrinsic

constraint in component.

 If not tree-like, circuit rank=E-K-N+1=number of independent circuits in

component.

 If the constraint potential, p(SM), of a submodel = N-K>0, intrinsic

constraint exists there.

A submodel wherein N=K is a nodal square (NS); a nodal square with no NS within

it is a basic nodal square (BNS) which is the kernel of constraint in the math model.

 Overlapping BNSs (with p(BNSs)>0) indicate overconstraint causing

INCONSISTENCY.

 Constraint propagates from the BNSs to resultant constraint domains via

the above rules.

 If resultant constraint domains overlap, they will either be redundant or

INCONSISTENT.

 Inconsistency must be negotiated by the human model builders to resolve

overconstraint.

BNSs can only exist within circuit clusters (cc’s).

A systematic search for BNSs involves separating the connected components,

trimming external trees, eliminating internal trees, separating kissing cc’s by

removing separating vertices, and finally computing the constraint potential of the

remaining cc’s.

 Constraint theory

136

Table 5-2. Constraint Theory Toolkit (Part II)

To determine computational allowability:

If a mathematical model is inconsistent, no computations on it are allowable.

Add the sources of extrinsic constraint -- independent variables and variables held

constant -- to the sources of intrinsic constraint and propagate constraint through the

BPG using the propagation rules above. If overconstraint occurs at any vertex, the

computation is NOT ALLOWABLE. If the constraint does not propagate to the

dependent variable, using the above procedure, search for BNSs which can continue

the propagation. If the constraint flow still does not reach the dependent variable,

the computation is NOT ALLOWABLE due to underconstraint. If neither over- or

underconstraint occurs, the computation is ALLOWABLE.

5.9 QUERIES FOR THE

REGULAR STUDENT

1. For the mathematical model of Problem 4.1, which of these

computational requests are allowable? If not, why not?

g = f(r, c), g = f(s, t), m = f(w, h, s, t), h = f(r, w), d = f(g, r)

2. Is the mathematical model of Problem 4.2 consistent? If so, develop

at least two computational requests on this model.

3. Is the mathematical model of Problem 4.3 consistent? Which of these

computational requests are allowable? If not, why not?

n = f(r), q = f(p), m = f(n, q), p = f(m, r), m = f(p)

4. Prove that the bipartite graph of a model with N relations and K

variables has 2
KN

different topologies.

5. Derive the number of possible computational requests can be made

on a model with N relations and K variables if it were not for T6 and

if the relations which formed the model were not counted as

computational requests.

Chapter 6 DISCRETE AND INTERVAL

RELATIONS

The diminished utility of metamodels

6.1 METAMODEL ISSUES AND PERSPECTIVES

“You recall that in Chapter Three, we defined three types of relations,”

said the analyst. “The most important of these types -- from the standpoint

of math modeling -- is the regular relation and was treated in Chapter Four.

In this chapter, we will look at the other types, called ‘discrete’ and

‘interval’.

“This must have represented quite an intellectual leap, starting I presume

from the findings of regular relations,” the manager suggested.

“On the contrary,” the analyst differed. “The original research in

constraint theory actually started within the domain of discrete relations. It

was stimulated by a paper on the solution of simultaneous equations in

Boolean algebra, written by Antonin Svoboda [10], who was a member of

Friedman’s PhD committee. The use of the extension and projection

operators in set theory was more easily visualized when only points -- rather

than multidimensional curves and surfaces -- were involved. To generalize

even further, we should remember that thinking about ordinals is more

fundamental and closer to metamathematical language than thinking and

operating on cardinals. Logic precedes analysis.”

The perspectives and tools which we found to be useful for regular

relations will now be examined for their utility regarding discrete and

interval relations.

 Constraint theory

138

6.2 THE GENERAL TAXONOMY AND PRIMARY

PROPERTY OF DISCRETE RELATIONS

The discrete relation defined by D19 may appear in a variety of forms, as

is displayed in Figure 6-1. Relation 1, a polynomial in a single variable is

similar to a regular relation, yet it will point constrain its one-dimensional

space at each of its roots. Relation 2 is an example of Diophantine equations

which permit only integers as allowable solutions. Note that most of the

equations in Chapter 4 -- such as the definitions of constraint potential and

circuit rank -- are this type of equation. Relation 3 is described by a “truth

table” which lists every point in its allowable space. Relation 4 is a logical

or Boolean equation, wherein all the variables take on the values of true or

false, or more compactly, 1 or 0, respectively. Finally, Relation 5 --

represented by a matrix -- can represent even more abstract mathematical

forms such as bipartite graphs, via their companion matrices. In this sense,

discrete relations can be considered as meta-metamodels for the graph theory

described in Chapters 2-4.

All these diverse characterizations of discrete relations can be covered

by:

Theorem 31: Every discrete relation is an intrinsic source of point

constraint with respect to each of its relevant variables.

Proof: By D19, in a discrete relation the intersection of any line with

that relation is a point or set of points. By choosing that line to be, in turn,

each axis of the relation’s space, each of the variables is seen to be point

constrained by that relation. QED.

Thus, the problem of finding sources of intrinsic point constraint and the

search for BNSs which was given so much attention in Chapter 4 is almost

trivial for discrete relations.

In pursuit of constraint theory’s general goal of determining consistency

and computational allowability, considerations of overconstraint and

multidirectional constraint propagation, as well as computational flow rules

will be treated in the following sections.

6.3 BOOLEAN RELATIONS

Boolean relations represent a significant portion of the class of discrete

relations and can be described by logical equations, truth tables, Venn and

Veitch diagrams, or by the complete mapping of allowable states in the

hyperspace of relevant variables. Figure 6-2 presents a simple example of

the logical equation: A=BC. In words, this merely states that A is true (1) if

B is true (1) and if C is not true (0). The truth table of Figure 6-2b provides

the value of A for all possible combinations of B and C. The Veitch diagram

6. Discrete and Interval Relations

139

Figure 6-1. Examples of Discrete Relations

-- essentially a rectangular version of the Venn diagram -- in Figure 6-2c

also shows all possible values of the implied independent variables B and C

and provides the value of A for each case. Sometimes, “forbidden domains”

on the Veitch diagram are specified. These are combinations of the input

variables which can never occur; when forbidden domains intersect domains

 Constraint theory

140

defined by the logical equation, these forbidden domains take priority. This

convention permits the simplification of logical equations which is important

in the logical design of digital computers. In accordance with the

hyperspatial viewpoints discussed in Chapter 2, when the total model is

defined by a set of simultaneous Boolean equations, the intersection of the

Boolean equations and the union of the forbidden areas are taken.

Figure 6-2. Boolean relations; and their representations.

6. Discrete and Interval Relations

141

Both the truth table and Veitch diagram representations suffer from

implications of independent/variables and forbidden zone ambiguity.

Figure 6-2d displays the most complete representation of any discrete

function: the identification of the set of points within the hyperspace of

relevant variables. For any binary Boolean equation, this set can reside only

at the corners of the hypercube formed by the points 0 and 1 along the axis

of every relevant variable. That is, these are the values of the variables that

are allowable by the defined relation. In the spirit of the four fold way

presented in Chapter 2, call the set of points that satisfy the equation “A.”

Let us now examine how the computational rule: (d-1)in/1 out that was

developed for regular relations applies to Boolean relations.

Figure 6-3 displays all possible computational paths through the relation

A=BC. It shows that for B and C taken as input variables, every one of the

four possible cases, the (d-1)in/1 out rule works. (This should not be

surprising , since the format of the Boolean equation, truth table and Veitch

diagram were predisposed towards this computational flow.) However, in

the cases of A,B or A,C as input variables, it is seen that only half of the

cases follow the (d-1)in/1 out rule, while the other half result in either

multiple answers or represent forbidden inputs. Noting that multiple results

also can occur in regular relations and can still be carried forward to other

downstream computations, and that regular relations were defined to exclude

forbidden inputs, it can be concluded that the (d-1)in/1 out rule weakly

applies to discrete functions.

Figure 6-3 explores the more extreme case -- from our regular relation

perspective -- of a single input variable. There exists one case out of six

where the single variable A, set equal to 1, can uniquely determine the

values of B and C. This is a case of 1 in/(d-1)out for nodes, which is

surprising if we are used to thinking only of regular relations.

In summary, it can be seen that the computational flow across discrete

relations depends far more on the precise nature of the relation than on

metamodel rules such as (d-1)in/1 out.

Next, let us examine the applicability of constraint potential, (N-K), to

determine the consistency of Boolean relations with K variables and N

relations.

As noted above, a Boolean relation of K variables can exist only at the

corners of a hypercube formed by the coordinates 0 and 1 along each of the

K dimensions of the relation. Therefore, each of the N relations can be

represented by a “binary number” containing 2
K
 states of A’s for points

contained by the relation and empty spaces which do not contain the relation.

Fig 6-4 provides the general format of a Boolean model. Note that,

despite the fact that it is a rectangular array with the rows referring to

variables and columns referring to relations, this is not a constraint matrix as

 Constraint theory

142

defined in chapter 2. The total number of rows equals the number of

possible states of any given Boolean function, and equals 2K, which is the

power set of the K states. The total number of columns equals all possible

Boolean functions which is the power set of the 2K possible states and

equals 2^(2^K). In other words, the number of columns is the power set of

the number of states which is the power set of the number of variables.

Figure 6-3. Computational Flows of A=BC

6. Discrete and Interval Relations

143

We now pose the question: If all the N columns refer to non-redundant

Boolean equations, what is the largest N which will not cause the total model

to become inconsistent? The answer to this question results in:
Theorem 32: For a 2-valued Boolean model consisting of K variables

and N independent (non-redundant) relations, the largest N which will not

overconstrain the model is: Nmax =
122 K

.

Proof: Recall that, from Chapter 2, the model will be inconsistent if the

total allowability set is the null set. Also recall that the intersection of a null

set with any other set results in a null set. By examining Figure 5-4 (b), we

note that exactly half of the columns can be paired with the other half such

that their intersections are null sets. (Specifically, look at columns 1 and 16,

2 and 15, …etc.) Also note that no other columns have null set

intersections. Therefore the maximum number of relations which will not

result in a null set is exactly half the total number of columns. In short, the

maximum N which assures consistency is half the number of columns, or:

Nmax = (½)(
K22) = (2

-1
)(

K22) =
122 K

. QED.

 Constraint theory

144

Figure 6-4. Proof of T32

6. Discrete and Interval Relations

145

Figure 6-5. The Constraint Potential for Boolean relations is weaker than for regular relations.

Thus, the constraint potential (N-K) for regular relations can be replaced

by (N-
122 K

) for Boolean relations, and as is shown in Figure 6-5, it is a

weaker indication of the model’s inconsistency. Once again, we see that the

specific properties of the relations must be examined and the metamodels, so

useful in Chapters 4 and 5, are less useful for discrete relations.

Additional properties and methods of discrete relations are therefore

discussed in the following.

6.4 TOPOLOGICAL IMPLICATIONS

These two types of discrete relations will have importance from a

constraint standpoint:

Definition 47: A full discrete relation is an explicit discrete equation in

which each point in the space of independent variables provides at least one

value of the dependent variable.

 Constraint theory

146

Figure 6-6. Examples of Full and Perfect Expressions.

Definition 48: A perfect discrete relation is a full discrete relation in

which each point in the space of independent variables determines a unique

value of the dependent variable.

Examples of these definitions are shown in Figure 6-6. Relation 1 is not

full since only three of the possible eight points in the abc-space provide

values for x. Relation 2 is not full because the point def is specified as being

forbidden and thus has no output to y. The map, 3, relating to the 4-state

6. Discrete and Interval Relations

147

variables u and v, is full if v is the dependent variable but is not full if u is

made the dependent variable. Thus, “fullness” and “perfection” are

properties of the explicit expression of a relation rather than of the relation

itself. Relation 4 is full with respect to x but is not perfect because the

“input” point (y=0, z=1) yields two values for x: =+1 and –1. Finally,

Relation 5 is perfect with respect to the ternary variable a because every

point in bc-space determines a unique value for a.

Theorem 33: Every Boolean relation which is perfect with respect to at

least one of its variables, is a universal relation.

Proof: Express the relation in its perfect, explicit form. By D48, every

point in the product space of the input variables produces an output; thus the

relation is universal. QED

Theorem 34: Every tree subgraph of Boolean relations each of which is

perfect with respect to at least one variable, is consistent.

Proof: By T33, the tree has only universal relations, and by T9, this tree

of universal relations is consistent. QED

Examples of the application of these Theorems are shown in Figure 6-7.

In Figure 6-7a, the mere specification that Relations 1, 2 and 3 are Boolean,

and that they are written in explicit form without specific forbidden domains

allow us to conclude that they are perfect with respect -- at least -- to the

dependent variables shown. By T34, then, the tree in Figure 6-7a is

consistent. Note that the dependent variables of Relations 1, 2 and 3 do not

indicate an obvious direction of computation or constraint flow.

Figure 6-7b presents a more general case of a discrete tree, mixing the

binary variable y with the ternary variables v, w, x and z, and the quaternary

variable r. Inspection of the truth tables for Relations 4, 5 and 6 discloses

that each relation is universal. Thus, by T9, this discrete tree is consistent.

That these rules cannot be generally extended to submodels whose graphs

are circuits is demonstrated in Figure 6-7c. Despite the fact that both of the

Relations 7 and 8 are perfect with respect to all their variables, and both are

universal, neither T9 nor T34 are applicable since they are connected in a

circuit cluster. In fact, a plot on a klm-space Boolean map will show that the

intersection of their relation sets is the null set for the given Relations 7 and

8, rendering the model inconsistent.

6.5 ALLOWABILITY OF DISCRETE

COMPUTATIONS

A general approach to the determination of the allowability of any

computational request made on discrete relations is described below.

The basic concept employed is a modification of the principles outlined

by A. Svoboda [15] in solving simultaneous systems of Boolean equations.

 Constraint theory

148

Figure 6-7. Trees of Discrete Relations.

Let us begin by applying a viewpoint established in Chapter 2. Refer to

the top of Figure 6-8, where the discrete Relation 1 is shown in perfect form

with respect to the 4-state variable z. Given this representation of the

Relation 1, let us request the computation: x=f(y,z), where x is binary and y

6. Discrete and Interval Relations

149

is ternary. By Figure 2-14, we must first take the xyz-space “view” of A1 by

taking the projection: PrxyzA1. This is accomplished in Figure 6-8 by

replotting the 12 points of A1 from the z by wxy map to the w by xyz map,

suppressing the value of variable w, and replotting in an x by yz map. Note

that PrxyzA1 contains only 11 points due to the fact that two points in A1

project onto a single point, (x,y,z)=(1,1,1) in the xyz view. The final step is

to transform the x by yz map of PrxyzA1 into a “function map” wherein the

outputs for x are plotted as a function of the 12 possible points in the yz input

space. As can be seen in the lower right hand corner of Figure 6-8, only 5

input points in yz-space yield unique results, while 3 input points yield

multiple outputs and the remaining 4 yield no outputs at all; they are

“forbidden.”

Figure 6-8. Determination of X=f(y,z) by projection and replot.

6.6 INEQUALITY RELATIONS

As defined by D19, an interval relation is any relation such that its

intersection with a line is an interval containing an infinity of points.

 Constraint theory

150

For all practical cases, the interval relation may be represented by a

system of inequality equations, or more generally by a combination of

inequality and “equals or greater (less) than” equations.

Definition 49: Inequality relations are defined by “<” and “>”. The

boundary set of equations are formed by replacing each < and > with equal

signs.

Figure 6-9 provides examples of D49.

Figure 6-9. Comparisons between pure inequality equations, equals or greater (less) than

relations, and boundary sets.

It was previously noted that, for regular relations, the BNS was required

to provide intrinsic point constraint, and for discrete relations, intrinsic point

constraint was always provided. We are now prepared to summarize the

point constraint situation for all classes of relations:

Theorem 35: In discrete relations, intrinsic point constraint always

occurs; in regular relations, intrinsic point constraint occurs in the presence

of a BNS; in inequality relations, intrinsic point constraint never occurs.

Proof: The first portion is true by T31; the second is true by T11; the last

is true because inequality relations do not include their boundary sets and

thus all intersections either include an infinite number of points or the null

set. QED

It is noteworthy that in a broad range of applications of math models, it is

the boundary set which is of the greatest interest. An example of this is the

general optimization techniques of linear programming where the

optimization of a linear criterion occurs only at the intersection of the

6. Discrete and Interval Relations

151

boundary sets of the constraining functions. Thus for these important

applications, the inequality sets collapse into sets of regular relations.

The next consideration is to examine the utility of the constraint potential

in determining consistency. As can be seen in Figure 6-10, the number of

inequality constraints can increase indefinitely without driving the overall

model into inconsistency. This observation permits us to state another

generalization across all relation classes:

Theorem 36. For model consistency, in discrete relations, Nmax=
122 K

;

in regular relations, Nmax=K; in inequality relations, there is no Nmax.

Proof: By T32, by T26, and by inspection of Figure 6-10. QED

Figure 6-10. The number of inequality constraints can increase to infinity without driving the

model's relation set to null (inconsistency).

Next, examining the propagation of constraint or computation through

the metamodel, we invoke the transitivity rule of inequalities to prove:

Theorem 37: If a>b, and b>c, then a>c.

 Constraint theory

152

As a side observation, if a, b and c are preferences, then the intransitive

preference ordering of a>b>c>a is considered irrational by decision

theorists.

Let us consider the implications of T37 on the allowability subset A in K-

space. In the upper part of Figure 6-11, the “A in K-space” interpretation of

the Theorem is presented. For ease of visualization, only the unit cube in the

upper octant is shown. The two intersecting planes are the boundary sets for

Relations 1 and 2 and the resultant allowability set A1 ∩ A2 is the

tetrahedron with the corners o,x,y and z.

The projection of A1 ∩ A2 on the ac plane is seen to cover half the plane

and corresponds to the interval relation a>c, substantiating T37. Thus we

see that a and c are mutually constraining: constraint on a will propagate to c

and vice versa.

On the other hand, consider the lower part of Figure 6-11, where the

inequality b>c has been replaced by b<c rendering T37 inapplicable.

6.7 SUMMARY

 Although the general principles of constraint theory are still applicable

to discrete and interval relations, the metamodel approach is less

powerful than for regular relations. Therefore the metamodel

viewpoints must be augmented by direct examination and computation

of the full model itself.

 Certain generalizations can be made across all relation classes:

Regarding: Discrete Relations Regular

Relations

Interval

Relations

Intrinsic Point

Constraint
At every node At a BNS only Never

Maximum N

without

overconstraint

Nmax =
122 K

, Nmax=K Nmax=infinite

The new allowability space becomes the pyramid with corners at

o,x,v,w,and z. The projection of this pyramid onto the ac plane covers the

entire plane and the variables a and c now do not exert constraint on one

another, in the view defined in Chapter 2.

6. Discrete and Interval Relations

153

Figure 6-11. Transitive and intransitive inequality relations.

 Constraint theory

154

6.8 PROBLEMS FOR THE DISCRETE STUDENT

6.1 Given: a model of random Boolean relations with K variables and N

relations. Derive: Probability of inconsistency as a function of K,N.

6.2 Construct a model comprised of three ternary discrete relations and

determine under what circumstances the constraint flow follows the

nodal rule: (d-1)in/1 out.

6.3 Construct two Boolean functions and find a third function which

satisfy both.

6.4 Derive the general n-ary version of Theorem 32

Chapter 7 THE LOGICAL STRUCTURE OF

CONSTRAINT THEORY

A Compact Summary

7.1 OVERVIEW

This chapter provides a summary of all the postulates, definitions and

theorems presented in Chapters two through Six. Finally, two graph

structures are presented, showing the interrelationships between the elements

of constraint theory’s logical structure.

7.2 POSTULATES AND PHILOSOPHICAL

ASSUMPTIONS

Mathematical model building is a rapidly expanding activity. Since

computers do not suffer the dimensionality limitations of the human mind,

modeling is the best hope for systems engineers to manage the complexity of

modern and future systems. All model builders and users share (or should

share) these philosophical views and postulates:

Mathematics has been able to capture an incredible portion of natural and

man-made phenomena with amazing depth and accuracy. Just as valuable is

the ability of mathematics to logically integrate many diverse views of the

world, generalizing new findings and helping to manage the vast

dimensionality of complex systems.

156 Constraint theory

However, mathematics usually presents a simplified picture of the real

world and the variables in its models may not be defined coherently across

all members of a diverse team. These key issues are not within the domain

of constraint theory and it is presumed that they have been attended to prior

to the methods presented in this book.

Even when the issues of model accuracy and definitions have been

handled perfectly, there still exist crucial issues of well-posedness. These

are in the domain of constraint theory and the structure presented here

addresses them. Specifically, are models consistent and are the

computational requests made of them allowable?

Table 7-1 presents the postulates which have been directly involved in

the development of constraint theory.

Table 7-1. Postulates

1. Model Builders inherently wish the relations in their model to

be locally universal. (That is, if any relation applies a
constraint to a variable, that variable will be able to propagate
that constraint to an adjacent relation without causing
inconsistency.)

2a. The laws of physics and other sciences, if they are fully
understood, are fundamentally consistent.

2b. The intent of mathematical model builders is to represent
phenomena accurately; thus if overconstraint -- or
inconsistency -- occurs, it is unintentional.

7.3 DEFINITIONS

The forty definitions employed in Chapter Two through Six are listed in

Table 7-2.

Most of these definitions either contribute to other, more complex

definitions, or to theorems. In seven cases -- marked by an asterisk -- the

definitions are a result of a set of theorems and represent a computational

procedure.

7.4 THEOREMS

The thirty-three theorems derived in Chapters two through five are listed

in Table 7-3.

The proofs of all these theorems -- except T12, “Hall’s Theorem” -- are

provided as they are first introduced in the chapters. The proof of Hall’s

theorem can be found in the reference.

7. The Logical Structure of Contstraint Theory 157

Table 7-2. Definitions

D1: Set, Subset D26: Adjacency
D2: Variable * D27: Connectedness algr’m
D3: Model Hyperspace * D28: Sep. Vertex Algorithm
D4: Product Set * D29: Tree Algorithm
D5: Relation * D30: Twig pruning algr’m
D6: Constraint D31: Circuit Rank

D7: Union, Intersection D32: Simple Circuit
D8: Projection, Extension D33: Circuit Vector
D9: Relevance * D34: Circuit Rank Algr’m
D10: Bipartite Graph D35: Graph Taxonomy
D11: Model Graph D36: Independent BNS
D12: Constraint Matrix * D37: BNS Location
D13: Consistency * D38: General Procedure
D14: Allowability D39: Overlap BNS
D15: Connected Component D40: CharVec of BNS
D16: Tree Structure D41: BNS Matrix
D17: Circuit Cluster D42: Overlapping Factor
D18: Universal Relation D43: Algorithm to detect
D19: Relation Classes Overlapping BNS
D20: Locally Universal D44: Constraint Domain
D21: Regular Relations D45: Expanding Constraint
D22: Constraint Potential Domain
D23: Degree of a Vertex D46: Remainder Matrix
D24: Over Constraint D47: Full Discrete Rel’n
 Under Constraint D48: Perfect Discrete
D25: Nodal Square Relation

 D49: Inequality Relations
 Basic Nodal Square

7.5 GRAPHS OF THE LOGICAL STRUCTURE OF

CONSTRAINT THEORY

The graphical portrayal of the relationships between definitions and

theorems is presented in Figure 7-1. Although this graph has two disjoint

sets of vertices, it is not a bipartite graph because in several cases, there are

edges connecting definitions to other definitions, and edges connecting

theorems to other theorems.

Another graphical portrayal is presented in Figure 7-2. This graph is a

generalization of Figure 7-1 and suppresses many of the details but

emphasizes the major logical thrusts of the theory. The more important

definitions -- such as the BNS -- and the more important theorems -- such as

the BNS location theorem -- are highlighted.

158 Constraint theory

7.6 COMPLETENESS

The author makes no claim that these summaries and Constraint Theory

are complete.

Indeed, it his hope that this work will stimulate further research and study

into the increasingly important objective of managing complexity.

7. The Logical Structure of Contstraint Theory 159

Table 7-3. Theorems

T1: If a model is inconsistent, no computational requests on it
are allowable

T2: If any submodel is inconsistent, the total model is
inconsistent

T3: If two relations have no variables in common, they are
consistent

T4: If two disconnected components are internally consistent,
they are consistent with each other

T5: No computations across disconnected components are
allowable

T6: Allowability of a computational request is independent of
the dependent variable

T7: There exist 2K possible computational request of a K-
variable model

T8: There exist 2N possible submodels of an N-relation model

T9: Any set of universal relations whose graph is a tree is
consistent

T10: Computational rules for models with a tree structure:
 nodes: d(n)-1 inputs --> 1 output
 knots: 1 input --> d(k)-1 output

T11: Every BNS exerts point constraint on each of its variables

T12: Hall’s theorem

T13: A subgraph is a tree if and only if V-E=1

T14: The number of independent circuits in a graph = circuit
rank of graph

T15: The graph taxonomy of D35 is mutually exclusive and
exhaustive

T16: If SUM Pi > -n, then, at least one of the Pi > -1

T17: If p(G)=N-K>0, G contains at least one BNS

T18: No BNS can have a subgraph with a constraint potential>0

T19: Every BNS must be connected

T20: No BNS can be a tree

T21: No BNS can have a tree which is not part of a circuit

(continued)

160 Constraint theory

Table 7.3 Continued – Theorems

T22: No BNS can lie across circuit clusters containing a
separating vertex

T23: No BNS can lie across a tree-like network of circuit
clusters linked by a tree

T24: No BNS can lie across a tree-like network of circuit cluster
linked to other circuit clusters by trees

T25: Every BNS is the union of adjacent circuits within a circuit
cluster

T26: If a circuit cluster (cc) has p(cc) > 0, then it has at least
p(cc)+1 BNSs

T27: The maximum number of BNSs in a cc=2c(cc)

T28: BNSi and BNSj are overlapping if i, j ≥ 1

T29: Solution time to detect overlapping BNS and identify over-
constrained variables using a matrix G with R rows and K
columns ~ K ∙ R2

T30: If the constraint flow path originated from an independent
variable x1 as input to a computational request discovers, by
the Duality Rules of T-10 for propagating constraint
throughout a graph network, the knot associated with
another distinct independent variable x2 of the same
request, then the request is not allowable

T31: Every discrete relation is an intrinsic source of point
constraint

T32: For a consistent model of Boolean relations, Nmax = 122 K

T33: Every Boolean relation which is perfect with respect to at
least one of its variables is a universal relation

T34: Every tree subgraph of perfect Boolean relations is
consistent

T35: In discrete relations, intrinsic constraint always occurs
 In regular relations, intrinsic constraint sometimes occurs

(in a BNS)
 In interval relations, intrinsic constraint never occurs

T36: For consistency in discrete relations, Nmax=
122 K

 For consistency in regular relations, Nmax=K
 For consistency in interval relations, Nmax=infinity

T37: If a > b, b > c then a > c

7. The Logical Structure of Contstraint Theory 161

Figure 7-1. Graph of Constraint Theory Definitions and Theorems

162 Constraint theory

Figure 7-2. Logical Thrusts of Constraint Theory

Chapter 8 EXAMPLES OF CONSTRAINT

THEORY APPLIED TO REAL-WORLD

PROBLEMS

8.1 APOLOGIES NOT REQUIRED

The examples provided in this Chapter are drawn from applications in the

aerospace industry that the author has experienced. Rather than apologize

for this apparently undemocratic representation, it should be noted that it

was the aerospace industry which gave the first major fertile ground for the

discipline of systems engineering to manage the ever increasing complexity

of integrating new technologies, equipment and missions.

The first example applies constraint theory to the operations analysis of

new systems; it is an elaboration of the example presented in Chapter 1. The

second example deals with the kinematics of free-fall weapons, which,

despite the advent of “smart bombs” still has utility in many operational

scenarios. The third example is a dynamic analysis of the control of the

trajectory of an asteroid employing mass drivers.

8.2 COST AS AN INDEPENDENT VARIABLE

(CAIV)

For several decades, the development process of new complex systems

by the United States Department of Defense (DOD), has permitted the

dominance of technical performance over cost and schedule. As a

consequence, the vast majority of programs suffered major cost overruns and

 Constraint theory

164

schedule slips. Essentially, performance was the primary driving

requirement -- or “independent variable.” In order to achieve a greater

measure of cost control and containment, the DOD initiated a management

thrust called, “Affordability, or Cost as an independent variable (CAIV)”.

Figure 8-1 provides a briefing chart used by the US Air Force Research

Laboratories (AFRL) that is intended to represent this new emphasis.

Figure 8-1. US Air Force Research Laboratories Briefing chart on Cost as an Independent

Variable.

At this broad level of detail, the math model employed is similar to the

example of Chapter 1. Mathematically, this type of problem is ideally suited

to the viewpoint and tools of Constraint Theory. Simply stated, a model is

built, and rather than follow the original computational flow from

performance specifications to cost, the flow is reversed; the independent and

dependent variables are switched. The new problem can be stated as:

“Given budgetary constraints on newly developed systems, what is the

optimum system design which provides the most acceptable performance

without exceeding these budgetary constraints?”

8. Examples of Constraint Theory

165

Let us flesh out in more detail the AFRL chart to attain a model which

can perform the desired analysis. Table 8-1 presents a list of variables; note

that K=14 across three levels of detail. Table 8-2 lists the relations, with

N=16. Noting that N>K, we should be immediately concerned with model

consistency.

Table 8-1. Variables for Model

 Constraint theory

166

The top-level bipartite graph shown in Figure 8-2 is completely tree-like

and has K=14 (representing all the variables) and N=5. Clearly, there is no

concern about overconstraint or consistency at this level.
Table 8-2. Relations for Model

8. Examples of Constraint Theory

167

However, the 9 variables at the bottom of the graph are all inter-related,

as is shown in Figure 8-3 where 6 additional nodes are added to indicate

these relations. For example, node 7 describes how the cost of development,

CD, influences the radar signature, and node 9 describes how CD influences

the accuracy (CEP) of weapon delivery. Although we now have

accumulated several circuits, the total constraint potential is still less than

zero, and there are no local domains where the constraint potential exceeds

zero -- thus, there are no BNSs. This can be verified by examining Figure 8-

5 which displays the constraint matrices for the various levels of detail in the

model.

Figure 8-2. Top-Level Bipartite Graph.

The constraint situation gets far more serious when the final 5 nodes at

the bottom of Table 8-2 are included in the model. Note that each of these

last five nodes are “policy demands” specifying additional requirements on

reliability, weight, radar signature, etc, without directly relating them to a

higher level system criterion. The addition of these is devastating to the

consistency of the model. As is shown in Figure 8-4, the application of

 Constraint theory

168

nodes 12, 14 and 16 drives CD into inconsistency. Similarly, the application

of nodes 10 and 15 drives CP into inconsistency.

Thus, the bipartite graph and constraint matrix provide the managers and

analysts visibility regarding the model’s consistency, paving the way

towards an eventual “cost as an independent variable” analysis. When

overconstraint does occur, it can be pinpointed and -- just as was done in

Chapter 1 -- allowing policy nodes such as 12-16 of Table 8-2 to be

reconsidered for model inclusion. In short, rather than specifying a

mandatory level of reliability, signature, etc., let these variables “run free” in

the network of all other relations and variables. In this fashion, optimum

values can be computed rather than dictated.

Figure 8-3. Top- and Middle-level bipartite graph.

8. Examples of Constraint Theory

169

Figure 8-4. Full Bipartite Graph.

 Constraint theory

170

Figure 8-5. Constraint Matrix for CAIV

8. Examples of Constraint Theory

171

8.3 THE KINEMATICS OF FREE-FALL WEAPONS

Consider the traditional bombing problem: an aircraft attempts to attain a

kinematic state which allows a free-falling bomb to impact on a target. A

great diversity of avionic equipment exists to measure the aircraft

kinematics, covering a great range of accuracy and cost. “What are the best

variables to measure?” is a common question. Before this question can be

properly answered, a more fundamental one must be addressed: “What sets

of variables are necessary and sufficient for a bombing solution, i.e., exactly

‘constrain’ the trajectory?” That this latter question is nontrivial is shown in

the following:

Define the following ten kinematic parameters of an aircraft with respect

to its target (See Figure 8-6):

X horizontal distance between aircraft and target

X horizontal velocity of aircraft

Z vertical distance between aircraft and target

Z vertical velocity of aircraft

r range from aircraft to target

r range rate, aircraft to target

S angle from horizontal of range vector

S angle rate of range vector

V aircraft velocity magnitude

d aircraft velocity angle from horizontal.

For the sake of the example, only the kinematics within the bomb trajectory

plane are considered. All the variables listed previously except X are

measurable by at least one type of airborne instrument. We may now state

the problem more specifically.

Which subsets of (X, Z, Z, r, r, S, S, V, d) form complete descriptions of

the aircraft in-plane kinematics? Call these describing sets.

From physical reasoning, the immeasurable set (X, X, Z, Z) completely

defines the kinematics where (X, Z) define a two-dimensional positional

vector, and (X, Z) define a two-dimensional velocity vector. Assuming for

the moment that every describing set has four variables, then

126
)!49(!4

!99

4 


C

four-element subsets of the measurable set must be examined to determine if

it is a describing set. This can be an extremely tedious problem since only a

few of these sets can be merely examined by inspection for easy

.

.

.

.

. . . .

. .

.

.

.

.

.

 Constraint theory

172

classification as a describing set (Z, r, V, d), or not a describing set (X, Z, V,

d)

Figure 8-6. Weapon Delivery Variables (initial conditions).

Constraint theory provides both a point of view and a procedure to solve

this type of problem whether it be ten-dimensional or 500-dimensional.

First, a mathematical model which relates all the relevant variables is

established. Second, meta models consisting of a bipartite graph and a

constraint matrix are established to analyze the constraint properties of the

original model. Third, these meta models are tested and adjusted, if

necessary, for internal consistency. Fourth, the classification of any subset

of measurables as a describing set or not a describing set can be made by

systematically propagating constraint through the meta model. In this

procedure, the subset to be analyzed acts as the input variables and any

known describing set such as (X, X, Z, Z) acts as the output variables of a

computational network.

Whether constraint theory is applied or not, the stated problem cannot be

solved unless the couplings and interactions between the kinematic variables

are clearly delineated as a set of relations. One such set may be the

following:

. . .

.

.

.

.

8. Examples of Constraint Theory

173

1: r = (X
2
 + Z

2
)

1/2

2: r = (XX + ZZ)(X
2
 + Z

2
)

-1/2

3: X = r cos S

4: Z = r sin S

5: S = tan
-1

 (Z/X)

6: S = (ZX – XZ)(X
2
 + Z

2
)

-1

7: V = (X
2
 + Z

2
)

1/2

8: Z = -X tan d.

Each relation is correct. More correct relations can be written, but the

preceding list seems to be sufficient, whatever that means. Normally, the

analyst must rely on his intuition or judgment regarding the point at which

he should cease adding relations to his model. The bipartite graph and

constraint matrix meta models are presented in Figure 8-7.

The fundamental criterion for math model consistency is that the total

model relation set is not the null set. This simply means that the set of points

in the total ten-dimensional space which satisfied every one of the eight

relations must include at least one point, otherwise some part of the model is

intrinsically incompatible with another part. From the constraint point of

view, model inconsistency is due to overlapping domains of intrinsic

constraint.

Each relation in the example above is an n-1 dimensional regular surface

where n is the dimension of the relation. Thus they are all regular relations,

and the source of intrinsic constraint in this type of model is always a basic

nodal square (BNS), a special subgraph of the total bipartite graph which is

recognized by an equal number of vertices of each type. A logical first step

in the consistency testing is to search the meta models for BNSs, thereby

locating constraint sources.

Since for even this small model, a systematic search through all possible

submodels involves examination of 256 cases, it is clear that more powerful

means must be used to search for the BNS.

Every BNS is the union of simple nodal circuits. We know that every

BNS must be a circuit cluster and can contain no treelike appendages.

Examination of either Figures 8-7a or 8-7b reveals that the variables r, s, v,

and d form trees attached to the main circuit cluster; therefore, the nodes 2,

7, 8, and 6 cannot be part of a BNS. Temporarily stripping these nodes

(“trimming the trees”) from the model, we get the circuit cluster depicted in

Figure 8-8.

. .

. . .

. .

.

.

.

.

.

.

 Constraint theory

174

Figure 8-7. Constraint Matrix Meta-model.

Since Figure 8-8 has the same number of each type of vertex (constraint

potential equal zero), it is a nodal square. Since every node has a degree of

three, there cannot exist smaller nodal squares of dimension 2x2 within

8. Examples of Constraint Theory

175

Figure 8-8. (The dimension of a nodal square must always be equal to or

greater than the degree of any of its nodes.) Since the degree of every knot

is also three, nodal squares of dimension 3x3 cannot exist within Figure 8-8

either. (In order for a nodal square of dimension n to contain a nodal square

of dimension n-1, there must exist a knot of degree 1.) Therefore, Figure 8-8

is a nodal square which does not contain smaller nodal squares and is thus a

basic nodal square. Moreover, it is the only BNS in the entire model.

Figure 8-8. Circuit Cluster.

We can generally expect that a BNS subgraph of a model of regular

relations will point constrain each of its variables. This does not violate the

fundamental criterion for model consistency.

But let us examine this BNS in the context of the purpose of the model.

We certainly did not expect the model to determine specific values of X, Z, r,

and S. Yet this is just what four equations covering four unknowns threaten

to do. Trying to resolve this absurdity, we focus our attention on this portion

of the original model and discover that relations 3 and 4 are redundant to

relations 1 and 5. 3 and 4 are therefore removed.

The new constraint matrix is shown in Figure 8-9. The total constraint

potential (relations minus variables) is now equal to –4, which agrees with

our physical reasoning that the total system should have 4 degrees of

freedom. Moreover, the subgraph 1-5 dealing only with position, and the

subgraph 7-8 dealing only with velocity, each have constraint potentials of

–2, further agreeing with our physical notions of position and velocity

vectors in a plane.

Certainly the set (X, X, Z, Z) is a describing set. Any other set (a, b, c, d)

will also be a describing set if, by setting unique values for (a,b,c,d), we can

compute unique values for (X, X, Z, Z). From the constraint matrix point of

view, we apply extrinsic constraint at the four knots a, b, c, d, and allow the

constraint to propagate throughout the matrix. If constraint propagates to (X,

. .

. .

. .

 Constraint theory

176

X, Z, Z) and no other variable is over-constrained, then the trial set (a, b, c,

d) is a describing set since it constrains the trajectory just as completely as

(X, X, Z, Z).

Figure 8-9. Final Constraint Matrix.

Constraint propagation through a constraint matrix follows very simple

rules which can be easily mechanized on a computer. When constraint is

transmitted to a variable via one of its edges, it is transmitted through the

variable via all its other edges. When constraint is transmitted to a relation

via all but one of its edges, it is transmitted through the relation via its

remaining edge. If this procedure does not completely fill the graph, then

the residue is investigated for BNSs.

Using this procedure, the describing sets can be found rapidly. It will be

more compact to list the measurable sets which are not describing sets. (See

Table 8-3.)

Each of the remaining 99 sets of four measurables, even the unlikely

XZrS, ZrSV, and ZrSd, perfectly constrains the trajectory and is a describing

set.

8.4 THE DEFLECTION OF AN EARTH-

THREATENING ASTEROID EMPLOYING

MASS DRIVERS

Since the early 1990’s there has been an increasing awareness of the risk

to earth by a strike from a large comet or asteroid. It is estimated that if such

a near-earth object (NEO) of 1 km or larger struck the earth it would disrupt

our global ecology and cause a billion human casualties. Much has been

. .

.

. .

8. Examples of Constraint Theory

177

accomplished regarding the detection of these NEOs; the number of

catalogued NEO’s has grown from under 5% to over 50% of their estimated

population from the early 90’s to the early 00’s.

Table 8-3. The set that are non-describing sets

These sets overconstrain velocity:

 XZZV XZSV XrVd

 XZZd XZSd XSVd

 XZVd XZSV XSVd

 XZrV XZSd ZrVd

 XZrd XZVd ZrVd

 XZrV ZZVd ZSVd

 XZrd XrvD ZSVd

These sets overconstrain position:

 XZrS ZrrS ZrSV

 ZZrS ZrSS ZrSd

However, much less attention has been paid to the deflection or intercept

of these threats to human civilization. The methods which provide the

highest energy density delivered to the threatening object are nuclear. But

there is great resistance to testing and putting nuclear devices into space, the

bomb may split the NEO in unpredictable ways, it may pollute the

atmosphere, and the coupling of the energy to the NEO is critically

dependent on the NEO’s structure and composition.

The most robust and lowest technical risk approach is to employ

traditional chemical propulsion to the NEO by attaching a conventional

rocket to the object and transfer orbit-changing momentum. But the cost of

this approach is enormous; not only must the chemical energy be delivered

to the NEO, the reaction mass must be transported there also. Imagine a

Saturn V rocket engine firing continuously for a year or more!

A concept which has received far less attention is to employ a mass

driver – essentially a linear motor which converts electrical energy into

kinetic energy. Once a mass driver is transported and installed on the NEO,

the required energy can be obtained with a solar collector and the required

reaction mass can be obtained from the NEO itself. The following analysis

.

.

.

.

.

.

.

. .

. .

 Constraint theory

178

employs constraint theory to perform trade studies of mass driver designs for

NEO deflection.

Figure 8-10. Schematic of Mass Driver installation on asteroid.

Refer to Figure 8-10 for a schematic of the mass driver installation on the

NEO. The NEO, or asteroid, has mass M and diameter da. A solar collector

of diameter ds collects energy for the mass driver. The mass driver is a long

coil which propels mass from the NEO in buckets with a velocity, v. The

8. Examples of Constraint Theory

179

action of the mass driver ejecta causes a reaction by the asteroid, moving it

in the opposite direction with velocity, V. In order to miss the earth within a

time-to-go, tgo, the NEO must move a distance S – normally considered to be

the earth’s radius. (Generally, the optimum application of force for orbit

changing is parallel to the asteroid’s velocity vector. However this analysis

stresses the case of final approaches with short time-to-go and small angles

between the orbits of earth and asteroid.)

The kinematic relations can be captured by the bipartite graph in Figure

8-11. The variables are:

S= distance moved perpendicular to the asteroid trajectory

a= acceleration of asteroid

t= time

Vf= asteroid final velocity

and the relations are:

s=f1(a,t)=(1/2)at
2
 Vf=f2(a,t)=at

Figure 8-11. Bipartite Graph for initial kinematic model.

We can now determine whether computational requests can be made of

this simple model:

The computational request, v=f3(a,s) is allowable and is: asv 2

which is a quite familiar formula. The computational request, v=f4(s,t) is

also allowable and it is: Vf=2s/t, but in the memory of the author, it was not

familiar. He does not recall ever seeing this formula, and doesn’t remember

that, in a system undergoing constant acceleration with zero initial velocity,

the final velocity is twice the average velocity. This was an unexpected

 Constraint theory

180

bonus of this simple application of Constraint Theory. The value of the f4

relation is that we can easily compute the total energy requirement to deflect

the NEO from impact with the Earth, for any given time-to-go.

Let us now expand the model from kinematics to dynamics and write:

Total energy imparted to the asteroid = Er=(1/2) MVf
2
=2M(Vave)

2

The energy available from the solar collector, Es=AFEtgo, where:

A=the solar collector area

F=the solar flux density at that distance from the sun

E=the flux-to-electrical energy conversion efficiency

tgo = time-to-go

Expanding the bipartite graph to include these variables and relations

yields Figure 8-12.

Figure 8-12. NEO Kinematics, NEO energy required and solar energy available.

It would be tempting to assume that all the energy collected by the solar

array is available to provide the asteroid with the required energy, that is, the

relation designated as “*” in Figure 8-12 is simply: Er=Es. Unfortunately,

this is far from correct, since both energy and momentum relations must be

satisfied:

8. Examples of Constraint Theory

181

Energy: Es=(1/2)MVf
2
+(1/2)mv

2

Momentum: MVf=mv

Define a new variable, k=v/V=M/v -- that is, the ratio of asteroid mass to

ejecta mass, or equivalently, the ratio of ejecta velocity to asteroid velocity.

Substituting k into the energy equation yields:

(Asteroid kinetic energy/ejecta kinetic energy)=1/k

In other words, only 1/(1+k) of the available solar energy couples to the

asteroid, the remainder accelerates the ejecta.

Paradoxically, the situation gets worse as the ejecta velocity increases

and the time-to-go increases. These results run counter to the “general

wisdom” that high ejecta velocity is good -- after all, much hard work has

been expended in driving up the exhaust velocity of rocket engines and mass

drivers -- and that the more time we have for deflection, the better off we

are. The general wisdom is still correct in their original domains and

problem statements, but does not precisely apply to the issues of asteroid

deflection.

All these results can be summarized on a single chart, Figure 8-13.

Following the standard conventions employed to compare NEO deflection

concepts, the two fundamental independent variables are time-to-go and

asteroid diameter. The dependent variable is the diameter of the solar

collector, ds. At the center of the chart it can be seen that a solar collector of

only 100 meter diameter is required to deflect a 1 kilometer asteroid if one

year of time-to-go is available. The chart also presents an additional

relation: the locus of ds=da. On this locus, the solar collector is the same size

as the asteroid and the time-to-go becomes the dependent variable.

In summary, although the number of variables of this model was not

exceptionally high, the constraint theory methodology provided useful

kinematic and dynamic insight, as well as managing the computational flow

through a confusing set of equations.

 Constraint theory

182

Figure 8-13. Results of the mass-driver analysis.

Chapter 9 MANAGER AND ANALYST MEET

AGAIN

Gists and Schizophrenia

The analyst and manager met again to celebrate their newfound

friendship and camaraderie.

“Would it be fair to ask if there is an overarching perspective to this

book?” asked the manager, still a little overwhelmed.

“Not really fair,” replied the analyst, “but I’ll try:”

THE GIST OF IT ALL

Technology’s ratchet is forcing systems into ever higher complexity.

Our greatest hope in managing complexity is math modeling.

But these models’ dimensionality is incomprehensible to any human.

By performing computations on the model, we can optimize designs as

well as understand the systems’ performance and phenomena.

But most of these computations are not allowable,

and it gets far worse with increasing dimension.

Computations are not allowable because they are not well-posed.

Allowable computations can only be made on a consistent model and

they must possess a proper constraint flow.

The kernel of constraint in a model is the basic nodal square (BNS)

and overlapping BNS’s cause inconsistency and overconstraint.

The topological properties of the model’s bipartite graph metamodel

provide practical clues for locating (and reconciling) BNS’s.

Bipartite graphs are most useful for regular relations.

“Alternatively, another summary from a somewhat different viewpoint is

presented in Figure 9-1,” the analyst contributed.

 Constraint theory

184

“These are not very brief ‘gists,’” complained the manager. “Haven’t

you heard the saying: ‘That which is good and short is doubly good’?”

“Yes, I have,” agreed the analyst, “but brevity depends on a shared

experience -- which we didn’t have originally -- and a deep understanding of

the language we’re using. Normally, the richer the language, the briefer the

meaningful messages can become. If nothing else, this book has introduced

you to new directions of mathematics, which is a special type of language.”

“Speaking of language, it can reasonably be argued that constraint theory

sits on a bridge between mathematics and qualitative language. All

languages have built into their grammatical structure the primitive concepts

of “none,” “one” and “many.” --I have no horse, I have one horse, I have

many horses. The rhythm and pivotal concepts of constraint theory follow in

analogous ways:

Regarding paths between parts of a bipartite graph:

 no paths: the parts are in different components

 one path: the parts are connected by a tree-like structure

 many paths: the parts are within a simple circuit or a circuit cluster

Regarding circuit rank, c(G):

 c(G) = 0: no circuits exist in G

 c(G) = 1: one independent circuit must exist in G

 c(G) > 1: multiple independent circuits must exist in G

Regarding constraint potential, p(G):

p(G) ≥ 0: BNS must exist in G.

“But it’s regrettable, isn’t it, that the bipartite graph couldn’t be as useful

for discrete and interval relations as it is for regular relations?”

“I do wish it would be more broadly applicable,” agreed the analyst, but

can you name me any branch of mathematics that is equally useful over all

applications? Math tends to be very specialized into specific application

domains. Consider the vast body of math that analyzes linear systems,

despite the fact that most real-world systems are nonlinear. On the bright

side, regular relations presently represent the most common type of relation

used in math modeling, so if it’s limited to a domain, at least it’s the most

significant domain.”

“As I promised in Chapter One,” continued the analyst, “Constraint Theory

really occupies just a simple portion of all mathematics. Consider John

Barrow’s ‘Structure of Modern Mathematics’ [16] shown in Figure 9-1,

where Constraint Theory is represented only in the simplest lower right-hand

corner. We made substantial use of bipartite graphs which are with graph

theory and closely related to hypergraphs since the constraint matrix of a

9. Manager and Analyst Meet Again

185

bipartite graph is essentially identical to the incidence matrix of a

hypergraph [17].”

 “There is another bright side,” the analyst added. “This book is only the

first venture into a new world of applied mathematics, and I’m hopeful that

far more research will be accomplished in the future.”

“I hope so too. We’ve been through a lot together,” commented the

manager, “more than I had expected at the beginning.”

“Yes,” agreed the analyst, “our interactions seemed to take on a life of

their own, far exceeding the expectations from the original seeds of our

discussions. In a way, that’s a testimony to the richness and importance of

the area.”

“Speaking of richness, you seem to have had a great diversity of prior

experience to provide the basis for such an invention as constraint theory,”

complemented the manager.

“Well yes, I suppose I have,” admitted the analyst. “I had the good

fortune to have worked in the fields of systems, mechanical, electrical and

civil engineering, applied mathematics, computer science, control systems,

surveying, soil mechanics, structural design, rockets, guidance and control,

instrumentation, steam power plants, environmental systems, pressure

sensors, accelerometers, altimeters, air data computers, missile fueling

systems, stellar inertial navigation, electro-optical sensors, acoustic terminal

homing sensors, optical gyroscopes, electronic countermeasures, airborne

radar, artificial intelligence, and low observables technology, to name a

few.”

“Very impressive,” beamed the manager. “I too have had the good

fortune to be involved with a great variety of programs, including the V-2

ballistic missile, the Redstone, Jupiter and Thor missiles, the Baldwin Hills

reservoir, the San Fernando Valley Steam Electric Plant, the Skybolt air-

launched ballistic missile, the F-5 fighter aircraft, the Advanced medium

range air-to-air missile, the brilliant antitank submunition and the B-2 stealth

bomber. In fact, I believe I’m the only person to have worked on both the

V-2 and the B-2. Additionally, I have contributed to workshops for all

branches of the US Department of Defense, NASA, DOE, NSF and NATO.”

 Constraint theory

186

Figure 9-1. The Structure of Modern Mathematics

From: John D. Barrow, The Book of Nothing, Pantheon Books, 2000, p152

9. Manager and Analyst Meet Again

187

 “Do you think it a coincidence that the list of technologies are generally

relevant to the list of programs?” asked the analyst.

 “Not if you realize that we’re really the same guy,” both observed. “And

the dialogues we used were merely an expository mechanism to describe a

new field and illuminate unfamiliar concepts. We were attempting --

without daring to be compared to them --to use dialogue in the manner of

Plato, Galileo and even Mark Twain in his philosophical work, ‘What is

Man?’

Roses are red,

violets are blue.

I am schizophrenic,

and so am I.

Appendix A COMPUTATIONAL REQUEST

DISAPPOINTMENTS; RESULTS OF

THE USC ALLOWABILITY

PROJECT

In order to construct a useful and trustworthy mathematical model, one

must gather authoritative data and relations, ask the advice of experts in the

domains of each submodel, assure that all uses of each variable agrees

semantically, and laboriously imbed the structure into a computer. After all

this painstaking work, it would be hoped that one could derive new

understandings across the many domains of the submodels and exercise wide

liberty in making computational requests of the math model.

It has been said of Carl Friedrich Gauss [19] that he “achieves greatness

in his work not through deep, abstract mathematical thinking, but rather

through an incredible vision of how the various quantities in the problem are

related, a vision that guides him through extraordinary computations that

others would likely abandon as futile.”

As was thoroughly discussed in the main text, a crucial impediment to

the allowability of computational requests is that the model is not consistent

due to intrinsic overconstraint. Clearly, no computational requests are

allowable on an inconsistent model. If this inconsistency is removed by

eliminating an appropriate number of submodels there still may exist

intrinsic basic nodal squares (BNSs) which apply constraint to all their

relevant variables.

Although the model has been rendered consistent, none of the variables

relevant to the BNSs can participate as an independent variable, dependent

 Constraint theory

190

variable, or variable held constant. This significantly reduces the number of

allowable computational requests.

Unfortunately, even if all the BNSs were to be removed -- making the

model completely free of intrinsic overconstraint and point constraint, the

likelihood of any given computational request being allowable is still quite

low. Examples may clarify this disappointing fact.

Consider the trivial case for N=1; the model has

only one node and K knots. There are 2
K

possible

computational requests, but only one allowable

computation (identical to the original contributing

submodel.) Thus, the probability of allowability,

p(a) equals 1/2
K
 = 2

-K
. If K=4, then p(a) = 1/16.

Next, consider a model with N=2 having a tree

structure and with K1 variables relevant to N1 and

K2 variables relevant to N2. Since one of the

variables is shared, the total number of variables is

K1+K2-1 and the total number of possible

computational requests =
1212
KK

. The total

allowable computational requests are the two

contributing submodels, plus K1-1, plus K2-1,

which merely sums to K1+K2. Thus, for this case,

1

21

212

)(
)(






KK

KK
ap

If K1=K2=4, then p(a) = 1/16 again.
If the N=2 model has a circuit structure with a

single circuit, then two of the knots are shared and

the total knots in the model = K1+K2-2. The total

number of allowable computations here is only 4,

so in this case,
2212

4
)(




KK
ap , and if the K’s =

4, p(a) = 1/16 (again!!)

This remarkable coincidence of p(a) = 1/16 does not extend to more

complex models. Continuing this mode of analysis becomes exceedingly

complex with higher N and K; the number of possible computational

requests for a simple model of only N=10 already exceeds 1000. Thus let us

skip ahead a bit to the region of K=6,8 and N=4,6 which was employed in

Chapter 1 to demonstrate how even these low dimensions can exhibit

interesting behavior. We will employ the results of the USC Computational

Allowability project [1] wherein three engineering graduate students

employed the techniques of Chapters 4 and 5 and exhaustively performed

allowability analyses on the models shown below.

Appendix A

191

In the analyses to follow, a key “cognitive limitation” was placed on the

total number of computational requests to be considered: only 2, 3 and 4

dimensional requests were analyzed. (For example, x=f(y,z) is defined as a

three dimensional request.) This limitation was employed for two reasons:

(a) most importantly, dimensions of 5 and higher require complex

“carpet plots” to understand and are very difficult for most people

to perceive, and

(b) with the constraint potential of the examples equaling -2, it is

highly unlikely that computational requests of dimension higher

than 4 would be allowable anyway.

 Constraint theory

192

Figure A-1. Bipartite Graph Topological Structures Examined.

Thus, instead of examining all 2
K
 conceivable computational requests we

only examine
)!4(!4

!

)!3(!3

!

)!2(!2

!







 K

K

K

K

K

K
of them. For K=6,

only 50 out of the total possible of 64 were examined, for K=8, only 154 out

of the total possible of 256 were examined.

Figure A-1 summarizes the ten bipartite graph topological structures

which the team examined. Table A-1 summarizes the results of the 1228

different computational requests which were made on these ten topologies.

Appendix A

193

Table A-1. Summary of Computational Request Allowability Analysis

Struct-
ure

K N E C B #
Examined

Allowable

%
Allowable

A 6 4 12 3 0 50 13 26%
B 6 4 11 2 0 50 12 24
C 6 4 10 1 0 50 9 18
D 8 6 18 5 1 154 6 4
E 8 6 18 5 0 154 23 15
F 8 6 17 4 1 154 6 4
G 8 6 16 3 1 154 6 4
H 8 6 15 2 1 154 6 4
J 8 6 14 1 1 154 3 2
K 8 6 13 0 0 154 6 4

TOTALS 1228 90 7.3%

LEGEND:

Structure: Bipartite graph topological structure shown in Figure A-1
K: Number of Knots, or variables
N: Number of Nodes, or relations
E: Number of Edges, or relevancies

C: Number of independent circuits, or circuit rank of the graph

B: Number of Basic Nodal Squares
Examined: Number of computational requests which were analyzed
Allowable: Number of requests which were computationally allowable
%: Percent of the requests which were allowable

The conclusion is rather dramatic: the overall probability of allowability

was only 7.3%. If the analysis had been extended to all 2
K

computational

requests, the percent allowability would have been much less.

Not surprisingly, those topologies which were devoid of BNSs had the

highest allowabilities, but even then it was only about 20%. Therefore it

should be abundantly clear that an allowability analysis must be performed

on every computational request before the programmers jam it into the

machines.

 Constraint theory

194

Worse yet, it is the author’s conjecture that -- as the model

dimensionality increases to 100, 1000 and beyond -- the absolute number of

allowable computational requests will increase, but the percentage of

allowability based on the total number of possible requests will decrease as

illustrated in Figures A-2 and A-3.

Appendix A

195

Figure A-2. Typical values of A&T for K = 10, 100, 1000

 Constraint theory

196

Figure A-3. A, T, & A/T vs. K

Appendix B GRAPH THEORY OVERVIEW

Why was the Bipartite Graph Chosen?

A general graph, or graph, consists of a set of vertices, some pairs of

which are connected by a set of arcs, or edges.

A bipartite graph (BPG) is a graph such that its vertices can be

decomposed into two disjoint sets, X and Y, and its edges only connect

vertices in set X to vertices in set Y.

Any property of a general graph is also a property of a bipartite graph,

but not vice versa (Table B-1). For example, both the general and bipartite

graphs have connected components, trees and circuit structures. However

only the bipartite graph has the property of constraint potential and the

structure of basic nodal squares.

Graphs have been used for many decades as mathematical metamodels.

Mason, et al [20], applied signal flow graphs (SFG) to the analysis of

complex systems where the functions were linearly separable. Friedman

[21] applied inverse signal flow graphs (SFG) to a broader class of systems.

Figure B-1 provides a comparison between how the signal flow graph, the

inverse signal flow graph and the bipartite graph assign portions of their

structure to the mathematical concepts of variable, relation and relevancy.

 SFG SFG BPG

Variable Vertex Edge Knot

Relation Edge Vertex Node

Relevancy Edge Edge Edge

Figure B-1. The definitions of Three Types of Graph Theory Metamodels.

 Constraint theory

198

For the purposes of Constraint Theory, the bipartite graph metamodel

was chosen over the other alternatives because it is more general

topologically and functionally, as well as the fact that it can represent both

the model and the computations performed on it.

Figure B-2 demonstrates the greater generality of the BPG by showing

that any SFG can be represented by a BPG, but most BPGs cannot be

represented by a SFG or an SFG. Figure B-3 demonstrates the greater

generality of the BPG by showing that the SFG is limited only to linearly

separable functions where the BPG can represent any function.

Table B-1. Graph Theory Overview.

General Graph: A set of vertices, some pairs of which are

connected by a set of arcs (or edges)

Bipartite Graph: The vertices have two species and the

arcs connect only two different species

Any property of a general graph is also a property of a

bipartite graph, but not vice versa

Graphs have been used for many decades to describe

computations in complex networks; ie; Signal Flow Graphs

The Bipatite Graph was chosen over the Signal Flow

Graph because it is more general topologically and
functionally and because it represents both model and
computation

Appendix B

199

Figure B-2. BPG Characteristics (1).

 Constraint theory

200

Figure B-3. BPG Characteristics (2).

Appendix C THE LOGIC OF "IF" AND "IF AND

ONLY IF"

Theorem 1 states that inconsistency implies computational non-

allowability. More compactly, we can state: “nonallowability if

inconsistent.” If the reverse, “inconsistent if nonallowable” were true then

we could state, “nonallowability if and only if inconsistent. (For even

increased compactness, “if and only if” is often contracted to “iff”.)

Actually, Theorem 1 is an “if” statement, not an “iff” statement. If a

model is inconsistent, then no computation on it is permitted. However, the

reverse is not always true because there are many other possible

computability problems even with consistent models. Actually, the vast

majority of the theorems presented in Chapters 3 and 4 are “if” theorems, not

“iff” ones. Another example of a one-way “if” theorem is Theorem 25

which states that a BNS must always lie within a circuit cluster. Many

students then wrongfully assumed that -- whenever they identified a circuit

cluster—they have found a BNS.

On the other hand, Theorems 13 and 14, dealing with the topological

properties of trees and circuits, are indeed two-way “iff” theorems.

In order to appreciate the logic of “if” and “iff” statements more deeply,

let us examine Figure C-1 which presents a Venn Diagram that displays the

events of consistency, allowability and their interactions.

202 Constraint theory

Figure C-1. Logical Analysis of Theorem 1.

Appendix D ALGEBRAIC STRUCTURES

DEFINITIONS AND PROPERTIES OF GENERAL VECTOR SPACES

(Gross & Yellen, 2006, pp. 687 & 690; Anton, 1977, p. 127)

Definition D-1: A binary operation * on a non-empty set A is a function

f: A × A  A, given by f [(a, b)] = a * b. The set A together with a binary

operation * is denoted (A, *).

Definition D-2: The binary operation * on set A is said to be associative

if for a, b, c  A, (a * b) * c = a * (b * c), and commutative if for a, b 

A, a * b = b * a.

Definition D-3: An element e  A is an identity element in (A, *) if

for all a A, a * e = e * a = a. And for all a  A, an element a’ A is an

inverse of a in (A, *) if a * a’ = a’ * a = e.

Definition D-4: A group G = (G, *) is a non-empty set G and a binary

operation * that satisfy the following conditions:

 The operation * is associative.

 G has an identify element.

 Each g  G has a unique inverse in (G, *), denoted g
-1

.

Definition D-5: An abelian group is a group whose operation is

commutative. In an abelian group, the binary operation is commonly denoted

“+” and called sum.

Definition D-6: A field F = (F, +, •) is a set F together with two

operations, + and • (generically called addition and multiplication), that meet

the following conditions:

 (F, +) is an abelian group.

 (F – {0}, •) is an abelian group, where 0 is the additive identity.

204 Constraint theory

 a • (b + c) = (a • b + a • c) and (a + b) • c = (a • c) + (b • c

).

Definition D-7: The finite field GF(2) consists of the set Z2 = { 0, 1 }

together with the mod-2 operations +2 and •. Thus:

 0 +2 0 = 1 +2 1 = 0 (this operation is identical to the logical

operation of exclusive OR)

 0 +2 1 = 1 +2 0 = 1

 0 • 0 = 1 • 0 = 0 • 1 = 0

 1 • 1 = 1

Definition D-8: A vector space over a field (of scalars) F is a set V (of

vectors) together with an operation + on V and a mapping, called scalar

multiplication from the Cartesian product F × V to V ((a, v)  av), such

that the following conditions are satisfied for all scalars a, b  F and all

vectors v, w  V:

 (V, +) is an abelian group, where the notation “+” is being used to

denote both addition of scalars in field F and addition of vectors in

set V.

 (a • b) v = a (bv).

 (a + b) v = av + bv.

 a (v + w) v = av + aw.

 ev = v, where e is the multiplicative identity of field F .

BINARY SET OPERATIONS (Gross & Yellen, 2006, pp. 197-198)

 References 205

Definition D-9: Let s1, s2, . . . , sn be any sequence of objects, and let A

be a subset of S = { s1, s2, . . . , sn }. The characteristic vector of subset A,

denoted charvec (A), is the n-tuple whose j
th
 component is 1 if sj A, and 0

otherwise.

In the model graph G of Figure D-1 below, EG = { e1, e2, e3, e4, e5, e6, e7

}. Cycle A has as its edge set EA = { e1, e2, e3, e4 }, and cycle B has as its

edge set EB = { e3, e5, e6, e7 }, both of which are subsets of EG. By Definition

D-9 above, charvec (EA) = (1, 1, 1, 1, 0, 0, 0), and charvec (EB) = (0, 0,

1, 0, 1, 1, 1).

e1 e2 e3 e4 e5 e6 e7

A charvec (EA) 1 1 1 1 0 0 0

B charvec (EB) 0 0 1 0 1 1 1

Cycle

Characteristic

Vector of

Edge Set

Edges

Figure D-1. Cycles and characteristic vectors of their edge sets

206 Constraint theory

Definition D-10: For graphs A and B, the union of their edge sets EA

and EB is the set of all edges which are either in EA or in EB, or both.

Symbolically, e  EA U EB if e  EA or e  EB.

In Figure D-2 below, edge set EA = { e1, e2, e3, e4 } and edge set EB = {

e3, e5, e6, e7 }. Thus, their union set EA U EB = { e1, e2, e3, e4, e5, e6, e7 }.

Note that charvec(EA U EB) is formed by combining the respective

components of charvec(EA) and charvec(EB) with the bitwise inclusive OR

operator. In C/C++, this operator has the syntactical symbol of “ | ”, e.g. (0 |

0) = 0; and (0 | 1) = (1 | 0) = (1 | 1) = 1. In this case, charvec (EA

U EB) = (1, 1, 1, 1, 1, 1, 1).

e1 e2 e3 e4 e5 e6 e7

A charvec (EA) 1 1 1 1 0 0 0

B charvec (EB) 0 0 1 0 1 1 1

1 1 1 1 1 1 1

Cycle
Characteristic

Vectors

Edges

charvec (EA U EB)

Figure D-2. Union of edge sets and its characteristic vector

 References 207

Definition D-11: For graphs A and B, the intersection of their edge sets

EA and EB is the set of all edges which are in both EA and EB. Symbolically:

e  EA  EB if: e  EA and e  EB .

In Figure D-3 below, edge set EA = { e1, e2, e3, e4 } and edge set EB = {

e3, e5, e6, e7 }. Thus, their intersection set EA  EB = { e3 }. Note that

charvec (EA  EB) is formed by combining the respective components of

charvec (EA) and charvec (EB) with the logical operator AND where 1

means true, and 0 means false. Symbolically, (0 AND 0) = (0 AND 1) =

(1 AND 0) = 0; (1 AND 1) = 1. In this case, charvec (EA  EB) = (

0, 0, 1, 0, 0, 0, 0).

e1 e2 e3 e4 e5 e6 e7

A charvec (EA) 1 1 1 1 0 0 0

B charvec (EB) 0 0 1 0 1 1 1

0 0 1 0 0 0 0

Cycle
Characteristic

Vectors

Edges

charvec (EA ∩ EB)

Figure D-3. Intersection of edge sets and its characteristic vector

208 Constraint theory

Definition D-12: For graphs A and B, the difference EA  EB is the set

of all edges which are in EA but not in EB. Note that the difference is not

necessarily commutative, i.e. (EA  EB) ≠ (EB – EA).

As demonstrated in Figure D-4 below, edge set EA = { e1, e2, e3, e4 } and

edge set EB = { e3, e5, e6, e7 }, therefore the difference set EA  EB = { e1, e2,

e4 }. However, the difference set EB  EA = { e5, e6, e7 }.

Figure D-4. Difference set (EA  EB) ≠ difference set (EB – EA)

 References 209

Definition D-13: For a graph G, let WE(G) denote the set of all subsets

of EG, i.e. the power set of all edges in G. The ring sum of two elements E1 ,

E2  WE(G) is defined as:

 E1  E2 = (E1  E2) U (E2  E1)

Figure D-5 below illustrates graphically an application of ring sum in

which two cycles A and B are combined to form a new cycle. Note that

charvec (EA  EB) is formed by combining the respective components of

charvec (EA) and charvec (EB) with the bitwise exclusive OR operator. In

C/C++, this operator has the syntactical symbol of “ ^ ”, e.g. (0 ^ 0) = (1

^ 1) = 0; and (0 ^ 1) = (1 ^ 0) = 1.

Figure D-5. Ring sum EA  EB = (EA  EB) U (EB  EA) = (1, 1,

0, 1, 1, 1, 1)

References

1. Leila Habibibabadi, Kathya Zamora-Diaz, Elliott Morgan,

Computational Allowability on Bipartite Graphs, projects for the

graduate course, Systems Engineering, ISE 541, University of

Southern California, 1998, 1999.

2. George Friedman, Constraint Theory Applied to Mathematical

Model Consistency and Computational Allowability, PhD

Dissertation, University of California at Los Angeles, 1967.

University Microfilms, Inc, Ann Arbor, MI

3. George Friedman, Constraint Theory, an Overview, International

Journal of Systems Science, 1976, Vol 7, No 10, pp 1113-1151.

4. Edgar Palmer, Graphical Evolution, John Wiley and Sons, New

York, 1985

5. Roald Hoffmann and Shira Schmidt, Old Wine, New Flasks, W. H.

Freeman and Company, New York, 1997

6. Norbert Wiener, A Simplification of the Logic of Relations,

Proceedings of the Cambridge Philosophical Society, Vol 17, pp

387-390, 1914

7. Claude E. Shannon, The Theory and Design of Linear Differential

Equation Machines, National Defense Research Committee Report,

Princeton University, Jan 1942

8. George Gamow, One, Two, Three...Infinity, Viking Press, New

York, 1947

9. Bourbaki, Elements de Mathematique; Theorie des Ensembles,

ASEI 1141; Hermann & Cie, Paris, 3me. ed., 1958

212 Constraint theory

10. W. Ross Ashby, The Set Theory of Mechanism and Homeostasis,

General Systems, Yearbook of the Society for General Systems

Research Volume IX, Bedford, MA 1964

11. Edwin A. Abbott, Flatland, A Romance of Many Dimensions,

Harper Collins, 1994; (Originally published circa 1880)

12. Dionys Burger, Sphereland, A Fantasy about Curved Spaces and an

Expanding Universe, Harper Collins, 1994

13. K. Devlin, The Math Gene, Basic Books, 2000

14. P. J. Hall, Representation Theorem in Set Theory, J. Lond. Math.

Soc, 10, 26. 1934

15. Antonin Svoboda, “An Algorithm for Solving Boolean Equations,”

IEEE Transactions on Electronic Computers, Oct 1963, pp 557-559.

16. John Barrow, The Book of Nothing, Pantheon Books, 2000

17. Claude Berge, Hypergraphs, North Holland, 1989

18. T. Gehrels, Hazards due to Comets and Asteroids, University of

Arizona Press, 1995

19. Ivars Peterson, Math Trek, Science News Online, April 17, 1999

20. S. J. Mason, Feedback Theory -- Some Properties of Signal Flow

Graphs Proceedings of the IRE, Sept 1953, vol 41, pp 1144-56

21. G. J. Friedman, Constraint Algebra -- a Supervisory Programming

Technique and a Cognitive Process, IEEE Transactions on Military

Electronics, April 1963, pp 163- 167

22. Phan, Phan (2011). Expanding constraint theory to determine well-

posedness of multi-dimensional math models (Doctoral dissertation).

University of Southern California.

23. Tarjan, Robert Endre (1972). Depth-first search and linear graph

algorithms. SIAM Journal on Computing, Vol. 2, pp. 146-160.

 References 213

24. Cormen, T. H., C. E. Leiserson, R. L. Rivest and C. Stein (2001).

Introduction to Algorithms. Cambridge, MA: The MIT Press.

25. Dechter, Rina (2003). Constraint Processing. San Francisco, CA:

Morgan Kaufmann Publishers.

26. Gross, Jonathan L. and Jay Yellen (2006). Graph Theory and Its

Applications. Boca Raton, FL: Chapman & Hall/CRC.

27. Tarjan, Robert Endre (1974, March). A note on finding the bridges

of a graph. Information Processing Letters, Vol. 2, No. 6, pp. 160-

161.

28. Shirey, R. W. (1969). Implementation and analysis of efficient graph

planarity testing algorithms (Doctoral dissertation). University of

Wisconsin, Madison, WI.

29. Anton, Howard (1977). Elementary Linear Algebra. New York, NY:

John Wiley & Sons, Inc.

Index

Abbot, 40

abelian group, 203

acceleration of asteroid, 179

accuracy, 167

adjacent, 72

adjacent circuits, 89

aerospace industry, 163

Air Force Research Laboratories (AFRL),

164

airborne radar, 185

aircraft, 171

aircraft kinematics, 171

aircraft velocity, 171

allowability, 147

space, 152

subset, 152

allowable, 7, 40, 124, 156

space, 138

ambiguity, 141

analysis, 137

angle rate, 171

applied mathematics, 185

articulation point, 97

artificial intelligence, 185

asteroid, xiii, 163, 176, 179, 180

avionic equipment, 171

Barrow, 184

Basic Nodal Square, 65

biconnected component, 97

binary operation *, 203

bipartite graph, xii, 8, 39, 46, 88, 103,

105, 108, 131, 157, 166, 168, 173,

183, 184, 185, 197

BNS, 65, 68, 79, 83, 105, 157, 173

detection of overlapping, 109

kernels, 79

location theorem, 157

matrix, 111

bombing problem, 171

bombing solution, 171

Boolean

algebra, 137

equations, 138

relations, 138

Boolean equations, 141, 147

Boolean relations, 141

Bourbaki, 31

Brahe, 26

brute force, 124

brute force procedure, 89, 90

budgetary constraints, 164

Burger, 40

cardinals, 137

Cartesian coordinates, 30

charvec (characteristic vector)

definition, 110

chemical energy, 177

chemical propulsion, 177

circuit cluster, 56, 79, 107, 131, 147, 184

circuit rank, 75, 76, 78, 138, 184

Circuit Vector Addition, 75

circuit vector space, 76

circuits, 105

cognitive limitations, 124, 191

comet, 176

complex systems, xi

computability, 46

computational

allowability, xii, 108

flow, 141, 181

paths, 141

request, xii, 66, 103, 105, 124, 156,

179

request disappointments, xiv, 189

computational allowability, 103

Computer Assisted Engineering, 1

computer program, xii

computer science family, xi

connected components, 184

connectedness, 131

216 Constraint theory

connectedness algorithm, 72

consistency, xii, 40, 46, 103, 107, 108,

124, 156, 166, 167, 168, 184

constrain (definition), 31

constraint domain, 114, 115, 118

constraint matrix, 28, 39, 46, 69, 72, 167,

168

constraint potential, 63, 76, 131, 138,

145, 167

Constraint Theory, xii, 1, 19, 156, 164,

172

continuum relation, 58

control systems, 185

Cost as an independent variable, 164

coupling of the energy, 177

crucial contract, 99

cut-point, 97

cut-vertex, 97

Definitions summary, 157

deflection, 177, 181

degree of a vertex, 63

Department of Defense, 163

dependent variable, 181

depth-first search (DFS), 93

Descartes, 44

design rules, 107

Devlin, 50, 61

DFS, 93, 97

difference, 208

dimensionality, 76

limitations, 155

Diophantine equations, 28, 138

directly overlap, 109, 114, 115

disconnect, 104

disconnected components, 103

discrete, 137, 184

discrete relations, 57, 137, 138, 145

disjoint sets, 157

doily, 79

dynamic analysis, 163

dynamic insight, 181

earth’s radius, 179

edges, 157

Einstein, 26

ejecta, 179

ejecta velocity, 181

energy density, 177

energy equation, 181

exclusive OR, 204, 209

exhaust velocity, 181

explicit expression, 147

extension, 34

extrinsic constraint, 10, 103, 105

FAMILY OF SUBMODELS, 35

field, 203, 204

finite field, 204

forbidden, 149

areas, 140

inputs, 141

zone, 141

fragmented understanding, 106

free-falling bomb, 171

Friedmann, 26

full discrete relation, 145

function map, 149

fundamental criterion, 173

Galileo, 187

Gamow, 27

Gauss, 189

generalizability, 49, 132

generizability, 51

global ecology, 176

Goldilocks rule, 101, 103, 131

grammatical structure, 184

graph, 39, 197

graph theory, xiv, 20

group, 203

Hall, 71

Hall’s Theorem, 156

homomorphic, 39, 46

Hubble, 26

hypercube, 141

hypergraphs, 184

hyperspace, 29, 141

of relevant variables, 138

hyperspatial viewpoints, 140

identity element, 203

iff, 51, 201

Imaginary numbers, 44

incidence matrix, 185

inclusive OR, 110, 206

inconsistency, 52, 105, 147, 168, 184

independent variables, 105, 164

inequality equations, 150

Inequality relations, 150

integers, 138

intercept, 177

internal trees, 83, 96, 99

Index 217

intersection, 34, 140

interval, 137

relations, 58, 184

intrinsic

BNS, 98, 101, 110, 116

constraint, 10, 103

constraint potential, 63, 101

point constraint, 138, 150

sources of constraint, 69

inverse signal flow graphs, 197

irrational numbers, 152

Irrational numbers, 43

Kepler, 26

kernel of constraint, 61, 183

kinematic, xiii, 163

relations, 179

state, 171

knots, 39, 46

language, xii

linear

algebra, 76

criterion, 150

programming, 150

systems, 184

local degree, 101

locally universal, 63

logical, 137

design, 140

operator AND, 207

thrusts, 157

mass drivers, 163, 177

math model, 164

math phobia, 50

matrix, 138

measurable, 171

meta models, 173

Metamath, 49

metamathematics, 50, 137

meta-metamodels, 138

metamodel, xii, xiv, 7, 46, 141, 145, 152,

198

Miller, 3

model consistency, 175

model graph, 39

momentum, 180

multi-dimensional models, xi, 25

nanosecond examinations, 131

near-earth object (NEO), 176

NEO deflection, 178

nested category, 79

Newton, 26

nodal squares, 65, 174

nodal twig, 81, 113

nodes, 39, 46, 107, 167

NS, 68, 88

nuclear devices, 177

null set, 147

operations analysis, xiii, 163

optical gyroscopes, 185

optimization criteria, 107

optimum

system design, 164

values, 168

orbit-changing momentum, 177

overconstraint, 7, 40, 64, 101, 105, 106,

166, 168

overlapping BNSs, 105

overlapping factor, 112

Palmer, 22

paradoxes, 61

parameters, 104

perfect discrete relation, 146

perfectly constrained, 64

permutation, 107

Plato, 187

point constrain, 69, 138

policy, 107

demands, 167

nodes, 168

pollute the atmosphere, 177

polynomial, 138

Postulate 1, 63

Postulate 2, 105

power set, 48, 54, 56

product set, 30, 46

product space, 147

projection, 34, 152

protolanguage, 49

protomath, 61

protomathematics, 49

pyramid, 152

quaternary variable, 147

radar signature, 167

range, 171

range rate, 171

reaction, 179

mass, 177

reaction mass, 177

218 Constraint theory

regular, 63

regular relations, xiii, 108, 137, 138, 141,

184

relation, 31, 46

classes, 57

relevant, 34

knots, 103

relations, 9

variables, 138, 141, 172

reliability, 167

remainder matrix, 117, 119, 120

required energy, 180

resultant

constraint domains, 69

constraint potential, 63, 101, 105

resultant BNS, 105

ring sum, 209

run free, 168

Saturn V, 177

schizophrenic, 187

self-referential loops, 61

semiperimeter, 76

separating vertex, 72

set, 28, 46

set theory, 20

Shannon, 22, 27

signal flow graphs, 197

simple circuit, 75

solar collector, 178

solar energy, 181

spanning tree, 93, 95, 96

squares, 65

stellar inertial navigation, 185

subdimensional, 26

sub-graphs, 99

submodels, xi, 46, 52

subset, 28

Svoboda, 137, 147

system criterion, 167

systems engineering, xi, 2

T25 procedure, 89, 91

Talmud, 25

taxonomy of graph structures, 79

technical risk, 177

Technology’s ratchet, 183

Ten Easy Pieces, 81

terminal node, 82, 113

ternary, 149

tetrahedron, 152

Theorem 1, 51

Theorem 10, 63

Theorem 11, 66

Theorem 12, 71

Theorem 13, 73

Theorem 14, 75

Theorem 16, 81

Theorem 18, 82

Theorem 19, 82

Theorem 2, 52

Theorem 20, 82

Theorem 21, 82

Theorem 22, 82

Theorem 23, 83

Theorem 24, 83

Theorem 25, 83

Theorem 26, 84

Theorem 3, 53

Theorem 31, 138

Theorem 32, 143

Theorem 33, 147

Theorem 34, 147

Theorem 35, 150

Theorem 36, 151

Theorem 37, 151

Theorem 4, 54

Theorem 5, 54

Theorem 6, 54

Theorem 7, 54

Theorem 8, 56

Theorem 9, 56

Theorems summary, 159

time-to-go, 181

Toolkit, 61

topological

properties, xiii

structure, 7

topology, 131

trade studies, 178

tradeoffs, xi, 14

trajectory plane, 171

transitivity rule, 151

tree, 56, 173

algorithm, 75

structures, 103, 105, 184

tree-ness, 131

tree-twig pruning algorithm, 75

trimming the trees, 173

truth table, 138, 141

Index 219

Twain, 187

twig node, 92, 108, 109

underconstraint, 7, 14, 40, 64, 101

union, 33, 140

universal, 147

universal relation, 56

USC Allowability Project, 189

variable, 28

vector space, 76

Veitch diagram, 138, 141

Venn diagram, 79, 139, 201

vertex pairs, 79

vertexes, 46

view spaces, 124

von Neumann, 61

weapon delivery, 167

weight, 167

well-posedness, 22, 156

Wiener, 22, 27

