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Preface 

At first glance, this might appear to be a book on mathematics, but it is 

really intended for the practical engineer who wishes to gain greater control 

of the multidimensional mathematical models which are increasingly an 

important part of his environment.  Another feature of the book is that it 

attempts to balance left- and right-brain perceptions; the authors have 

noticed that many graph theory books are disturbingly light on actual 

topological pictures of their material. 

Constraint Theory was originally defined by George Friedman in his PhD 

dissertation at UCLA in 1967 and subsequent papers written over the 

following decade.  There was a dearth of constraint theory publication after 

the 1970’s as Dr. Friedman was working on several classified aerospace 

programs wherein publication of any kind was most difficult.  The first 

edition of this book was published in 2005. Constraint Theory was further 

extended by Phan Phan in his PhD dissertation at USC in 2011, leading to 

this second edition. 
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Introduction 

Many thousands of papers have been written about the accelerating pace 

of increased complexity and interactivity in virtually every walk of life in the 

developed world.  Domains which previously could have been studied and 

managed separately -- such as energy, the environment and economics -- 

must now be dealt with as intimately intertwined disciplines.  With its 

multitude of additional capabilities, complex systems also provide a 

treacherous array of fragile failure modes, and both the development and 

operation of new systems are an increasing challenge to the systems 

engineer.  Advanced technology is the primary driving force behind the 

increasing complexity and the enthusiastic pushing of immature technologies 

is behind most of the early failures in the development phases. 

Perhaps the most significant advanced technology employed in new 

complex systems is the computer science family with its ancillary disciplines 

of communications and software.  Fortunately, computer science also 

represents a major opportunity to control the design and operation of 

complex systems because of its ability to perform multi-dimensional 

modeling to any level of detail desired.  Math models have been used in 

support of every phase of systems engineering, including requirements 

management, preliminary design, interface and integration, validation and 

test, risk management, manufacturing, reliability and maintainability, 

training, configuration management and developing virtual universes to 

measure customer preferences prior to the implementation of the design.  

Properly used, the enormous power of modern computers can even furnish 

researchers with a synthetic world where theories can be tried and tested on 

validated models, thus avoiding far more expensive tests in the real world.  

A wide variety of questions -- or “tradeoffs’ -- can be asked of the models 

and, at least in theory, the analyst has a free choice as to which computations 

he wishes to observe and which variables he desires to be independent.  

Philosophically, it can even be argued that the math model employed in this 

fashion provides the technologist a virtual extension of the scientific method 

itself. 

Those who have actually wrestled with large-scale models will complain 

that the above description is far too rosy.  Submodels which are developed 
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by separate organizations are normally very difficult to integrate into an 

overall working model; they often must be dealt with as “islands of 

automation.”  The greatest of care must be taken to make sure that the 

definition of each variable is clear and agreeable to every member of the 

team.  In general, it is difficult to distinguish between a model and the 

computer program, and if a computational request is made which reverses 

dependent and independent variables, then the model must be 

reprogrammed.  To say the least, much diligent effort must be undertaken to 

obtain the many advantages promised by mathematical modeling. 

However, even after due diligence, there exists a much deeper problem 

that often diminishes the utility of math modeling; it is associated with the 

traditional “well posed” problem in mathematics.  We need to know whether 

the model is internally consistent and whether computational requests made 

on it are allowable.  The alarming facts are that models constructed by 

diverse teams -- and this is normally the case for very large models -- have 

internal inconsistencies and that most of the possible computational requests 

which can be made on even consistent models are not allowable.  This 

problem is the domain addressed by Constraint Theory and is the subject of 

this book. 

Chapter One provides an example of low dimension, showing how 

problems of consistency and computational allowability can arise in even 

simple situations.  The reader is introduced to the two main characters of the 

book -- an experienced manager and an analyst -- whose dialogue will 

hopefully illuminate the book’s many concepts.  The bipartite graph is 

introduced, as are a few simple rules.  However, the analyst argues that, in 

order to expand the tools to models of very high dimension, and in order to 

trust the reliability of these tools, the theory must be based on a more 

rigorous foundation.  “Only the simplest 5% of graph theory and set theory 

are required”, he claims. 

Chapter Two begins to establish the rigorous foundation by defining four 

“views” of a mathematical model: 1) set theoretic, 2) submodel family, 3) 

bipartite graph, and 4) constraint matrix.  The first two views are full 

models; the last two views are metamodels.  Then, rigorous definitions of 

consistency and computational allowability are made in the context of these 

views. 

Chapter Three discusses the similarities between language and 

mathematics and provides some general consistency and computability 

results with respect to any class of relation.  In order to provide a basis for 

the next three chapters, three classes of exhaustive and mutually exclusive 

relations are defined: discrete, continuum, and interval. 

Chapter Four addresses the constraint theoretic properties of regular 

relations, the most important type within the continuum class, and the most 
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often employed in the development of multidimensional math models.  The 

simple rules presented in Chapter 1 are rigorously proved employing the 

foundations of Chapters 2 and 3.  The topological properties of the bipartite 

graph are analyzed to provide key conclusions of the model’s consistency 

and computational properties. 

A specific type of subgraph within the bipartite graph, called the Basic 

Nodal Square (BNS) is identified as the “kernel of intrinsic constraint” and is 

accused of being the culprit in model inconsistency and unallowable 

computability.  Trivially easy computations on the bipartite graph -- such as 

circuit rank and constraint potential -- are shown to have enormous utility in 

locating the BNSs which hide in tangled circuit clusters.   

Chapter Five discusses the general issue of constraint propagation 

through a connected model graph of regular relations. A detailed procedure 

for determining model consistency and computational allowability in such a 

model is introduced. A constraint theory toolkit is provided to employ the 

rules and theorems in an orderly manner and which can find BNSs trillions 

of times faster than brute force approaches.  Chapters Four and Five 

represent the core of constraint theory at its present stage. 

Chapter Six addresses the constraint properties of discrete and interval 

functions such as those from Boolean algebra, logic and inequalities.  These 

classes of relations are less important in support of modern math modeling, 

but strangely, they were the first that the author studied in his development 

of Constraint Theory.  It was easier for him to imagine multidimensional sets 

of points than multidimensional sets of continuous functions.  Interval 

relations require the greatest interaction between models and metamodels, 

and the concept of constraint potential is less useful than for regular 

relations. 

Chapter Seven provides a compact structure of constraint theory.  All 

postulates, definitions and theorems are listed and their logical 

interrelationships are displayed in the form of quasi-bipartite graphs. 

Chapter Eight presents detailed examples of the application of constraint 

theory to the areas of operations analysis, kinematics of free-fall weapon 

delivery systems and the dynamics of deflecting asteroids with mass drivers. 

Chapter Nine summarizes the book and provides the manager and analyst 

a final opportunity to dialogue and discuss their common background. 

Problems for the interested student are presented at the end of most 

chapters, so this book could be employed as a text for a graduate course -- or 

senior level undergraduate course -- in Systems Engineering or mathematical 

modeling.  

Of course, a complete list of references is provided, as well as an index. 

Several appendices treat detailed material to a depth that would slow 

down the natural rhythm of the exposition if they were included in the 
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chapters themselves.  Appendix A is noteworthy in that it summarizes the 

research projects on “computational request disappointments.”  On models 

approximately the size of Chapter 1’s “simple example” -- eight variables -- 

the percentage of allowable computational requests based on the total 

number of possible computational requests is only on the order of 10%.  It is 

presently “Friedman’s conjecture” that as the dimensionality, K, of the 

model increases, the number of allowable computational requests also 

increases, perhaps as fast as the square of the model’s dimension or K
2
.  

However, the number of possible computational requests increases far faster: 

2
K
.  Thus, for a 100-dimension model, only 10

-26
 of all possible 

computational requests will be allowable!  Models of thousands of 

dimensions have been built and are planned; so the ratio of allowable to 

possible computational requests is enormously worse than even this 

incredibly low number.  The technologist who wishes to gain maximum 

benefit from asking his model to perform any computation his imagination 

conjures up will certainly be disappointed!  A tool such as constraint theory 

which will lead him to the 10,000 computational requests (K=100) or 

1,000,000 requests (K=1,000) which are allowable should be valuable. 

Appendix B provides a very brief overview of graph theory with the 

objective of justifying why the bipartite graph was chosen as the primary 

metamodel for constraint theory. 

Appendix C describes the rigorous logic of the difference between “if and 

only if” and “if” types of theorems.  Most of constraint theory’s theorems are 

of the latter category -- a source of confusion to many students. 

Appendix D establishes fundamental algebraic structures which are 

essential to implement constraint theory. These include definitions and 

properties of general vector spaces and binary set operations. 

 

 



  

 

A Warmup Problem in Complexity 

This book makes substantial use of a mathematical structure from graph 

theory called a bipartite graph.  In the past, bipartite graphs have been 

employed to solve “pairing” problems associated with various social 

situations such as picnics or dinner parties. 

Out of respect for this tradition, let us consider a set of five men -- named 

Jack, Jake, Jude, Juan, and Jobe -- and a set of five women -- named Jane, 

Joan, June, Jean, and Jenn.  Let us define a relationship pattern as a 

complete description of all heterosexual relationships between the five men 

and five women.  For example: 

 In the communal pattern, every man has a relationship with every 

woman.  There is one such pattern. 

 In the celibacy pattern, none of the men have a relationship with 

any of the women.  Again, there is one such pattern. 

 In the male harem patterns, one of the men has a relationship 

with each of the women, but all the other men are devoid of 

relationships, except perhaps to be eunuchs.  There are five such 

patterns.  Similarly, there are five possible female harem 

patterns. 

 In the monogamy patterns, each man has a relationship with 

exactly one woman and vice versa.  There are 5!=120 such 

distinct patterns. 

And so on.  There are many more patterns.  The question is: What is the 

total number of possible heterosexual relationship patterns between five men 

and five women? 

The answer -- discussed in Chapter 4 and Appendix A -- may surprise 

you: it’s over 30 million (!).  It certainly surprised the author and changed an 
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important objective of his research agenda.  Moreover it represents the 

hidden depths possible in apparently simple problems of low dimension as 

well as a challenge to one’s belief in intuition or rational mathematics. 
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Chapter 1  MOTIVATIONS 

 

What is Constraint Theory and why is it important? 

 
 

1.1 TRENDS AND PROBLEMS IN SYSTEM 

TECHNOLOGIES 

Gone forever are the simple days!  Virtually every identifiable trend is 

driving humanity’s enterprises into more intimate interaction and conflict.  

Increased population, accelerated exploitation of resources, and expanded 

transportation have brought the previously decoupled worlds of economics, 

energy and the environment into direct conflict.  With the greater efficiency 

of travel and communication, the emergence of global marketplaces and the 

revolution in military strategies, the international world is incredibly more 

interactive, multidimensional and complex than even a decade ago.  Locally, 

we observe ever tighter coupling between emerging problems in crime, 

poverty, education, health and drug misuse.  All these issues have been 

aggravated by an explosion of new technology and -- especially in the 

United States -- a compulsion to force these new technologies into early and 

often simultaneous application.  The most vigorous of these advancing 

technologies -- digital computation -- brings with it an unexpected 

complexity challenge: software and the management of highly complex and 

multidimensional mathematical models. 

Fortunately, this most rapidly advancing technology of computer science 

not only adds to the complexity of designed systems, it also contributes 

enormously to designing these systems themselves.  A host of new 

“computer assisted” software packages are published each year, running the 

gamut from Computer Assisted Design (CAD), Computer Assisted 

Engineering (CAE), Computer Assisted Systems Engineering (CASE), 

Computer Assisted Manufacturing (CAM), Computer Assisted Instruction 
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(CAI), and eventually to Computer Assisted Enterprise Management 

(CAEM).  This family of tools permits the design engineers to control a 

virtually unlimited number of variables, to predict behaviors and 

performance of systems still in their early conceptual stages, to optimize 

with respect to detailed criteria, to effect interdisciplinary integration and to 

perform design changes with unprecedented speed and accuracy.  It is not an 

exaggeration to claim that without this array of computer-based tools, many 

systems that exist today would have been impossible to design and 

implement. 

However, as most systems engineers who attempt to gain benefit from 

these tools are well aware, computer-based design is a mixed blessing.  A 

common complaint is that the various programs which support facets of the 

total problem are “islands of automation” -- they are difficult to integrate 

into a total system problem solving capability.  Another problem is that the 

tools are virtually useless in sorting out the variety of languages and 

technical shades of meaning, especially on highly interdisciplinary systems.  

Yet another challenge for the engineering and program managers is the 

vigorous and frequent upgrading of every hardware and software package 

causing unprecedented costs of initial installation and training to the overall 

design process, not to mention the inevitable bugs in the early versions.   

Many companies have even established new organizations whose members 

are expert in computer-assisted programs, and not expert in the technical 

design itself. 

Observers who watched the agonizing entry of computers over the last 

several decades into many diverse worlds such as financial management, 

stock market trading, airline ticketing, air traffic control, and education 

should be optimistic that eventually computer-based design will also become 

an efficient tool which will become so easy to use that investing in it will be 

clearly justified.  But in order for this dream to occur, there are more 

problems to solve -- deeper problems than getting the definitions sorted out 

and software packages to work together. 

Even when the willing but cognitively challenged computational giants 

of computer based tools are completely manageable, several fundamental 

problems will still exist, mostly on the cognition and mathematical levels. 

Nothing is said in any of the present set of textbooks on Systems 

Engineering about the regrettable “subdimensionality” of the human 

intellect.  Despite the fact that a thorough description of a modern complex 

system requires the understanding and integration of hundreds to thousands 

of variables, cognitive scientists have known for decades that the human 

mind is limited in its perceptive powers to a mere half-dozen dimensions.  

Regardless of all our other miraculous gifts such as language, art, music, 

imagination, judgment, and conscience, our dimensional perceptive power is 
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tiny compared to the challenges of designing complex systems, and sadly, it 

appears that this is a “wired in” shortcoming of our nervous system and thus 

we can not hope to be trained to attain a higher perceptive capability.  This 

“dimensionality gap” is severely aggravated by the habit many self-styled 

“decisive managers” have in further suppressing their limited perception by 

searching for simplifications such as “the bottom line,” “the long pole in the 

tent” or  “getting the right angle” in attempting to make complex 

descriptions more comprehensible to them.  Typically, when the 

dimensionality of the model overwhelms that of the decision maker, and he 

sees results which appear to be anti-intuitive, he will tend to distrust these 

results as the product of software bugs or other errors.  Thus, major 

opportunities to learn from the enhanced power of modeling are lost because 

the operation of the computer becomes more and more opaque to the 

decision maker as the dimensionality increases. 

As an aside, we humans also have problems with numbers: we cannot 

perceive 29 in the same way we perceive 5.  The raw arithmetic perception 

of the average person is “the magic number seven, plus or minus two,” 

according to the cognitive scientist George Miller.  However, after a lifetime 

of dependable experience with arithmetic algorithms, we have the illusion 

that we can understand and manage entities such as 29, or even 

29,000,000,029. 

The other fundamental problem was previously referred to as the “well-

posed” problem in mathematics.  That is, when a mathematical model is 

established, is it internally consistent?  When computational requests are 

desired based on this model, are they allowable?  If the answer to either 

question is “no,” then we have a situation which is not “well posed” and we 

can expect nonsensical results or jammed up attempts to program.  This 

problem is made worse by the fact that in most digital computer programs, 

models are built with a unidirectional computational flow that was 

anticipated by the programmers, but is not necessarily responsive to the 

needs of the decision makers.  It was a source of great irritation to this author 

to be told many times over his career that a computational request was 

“impossible” because the model was programmed with another 

computational flow in mind.  However, when the reprogramming was done 

in an attempt to be more responsive, more fundamental problems frequently 

arose. 

An example of these problems will be useful at this point.  The example 

given in the next section was chosen to be as simple as possible, but still 

indicating aspects of the well posed problem that can arise even without our 

entering a dimension so high that our perceptions are boggled. 
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1.2 AN EXAMPLE OF LOW DIMENSION 

A decision-making manager was authorized to initiate the preliminary 

design of a new system development by his board of directors.  In the true 

spirit of systems engineering, he realized the importance of making the best 

decisions as early in the system development process as possible.  

Accordingly, he gathered a team of the best specialists available, along with 

a systems analyst to help organize the math model that he hoped would 

guide him to strategic systems tradeoffs and decisions.    

The chief systems engineer stressed that, in order for an “optimum 

design” to exist, it was necessary to define a total systems optimization 

criterion, T: 

  

T = PE/C  (1) 

 

where:  

P was the political index of acceptability by the board of directors, 

E was the system effectiveness, and 

C was the life cycle cost of the system.    

 

The operational chief, expressing a weariness with the overly aggressive 

use of new and unproved technology on most of his previous systems, 

wanted to stress that most of the total system cost should be applied to 

operations and support, not new systems development.  Thus, he contributed 

this limitation: 

 

D = k1C,  where k1=0.3    (2)   

 

where D, the development cost, was to be limited to 30% of the total cost. 

 

The operations and support specialist, attempting to predict the level of 

cost after production and delivery were complete, provided: 

 

S = X + 0.5D   (3) 

 

where:  

S is the total support cost 

X is the cost of ops and support if there were no new technology 

D is the development cost for the system, including new technology. 

 

The systems costing and estimating specialist contributed the obvious: 
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C = D + S   (4) 

 

taking care that all ambiguities between development, operations and 

support costs were clearly defined and resolved. 

The reliability, maintainability and availability specialist provided: 

 

S = K2E/(1-A)   (5) 

 

where:   

K2 is a constant, 

A is the probability that the system is ready when called upon. 

 

Finally, the operations analyst provided this definition of effectiveness: 

 

E = MA(D/Dmax)
1/2 

(6) 

 

where:  

M is the mission success probability, given the equipment is available  

D is the amount spent on development 

Dmax is the budget requested by the developers 

 

All these inputs from the specialists were reviewed for reasonableness by 

the systems analyst and integrated into the “model” shown in Table 1-1. 

Table 1-1. The Mathematical Model 

 
1) T = PE/C 
2) D = k1C   where k1 =  0.3 
3) S = x + 0.5D 
4) C = D + S 
5) S = k2E/(1-A) 
6) E = MA(D/Dmax)1/2 
 
where: 
T = Top-level systems criterion 
P = Political index of acceptability 
C = Life cycle cost of a system 
D = Development costs of system 
S = Support and operations cost 
E = Effectiveness of system 
M = Mission success probability (working) 
A = Availability of system 
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“There appear to be no internal inconsistencies,” reported the analyst to 

the manager.  “Indeed, this model is enormously simpler than any I have 

ever dealt with for years.” 

The manager, who claimed many years of systems engineering 

experience, observed, “I see the model is imbedded in an eight-dimensional 

space and is constrained by six equations.  Therefore, there should be two 

“degrees of freedom.”  Since I’m most concerned with the total system 

optimization criterion, please compute plots of T = f7(S,P) for me.” 

“Sorry, said the analyst, that is not an allowable computation on this 

model. Although the total model seems to have two degrees of freedom, that 

freedom does not exist uniformly throughout all parts of the model.  In 

particular, the submodel composed of relations 2, 3 and 4 is concerned only 

with the variables C, D and S.  Therefore, in the three-dimensional subspace 

of CDS, we have three equations and three unknowns; thus there are no 

degrees of freedom, and these variables are constrained to a point or a set of 

points.  Since it is such a constrained variable, S obviously cannot act as an 

independent variable for the computational request, T = f7(S,P).” 

The manager did not like the word, “obviously”.  “There must be 

something wrong with the model,” he asserted.  The specialists got huffy. 

The analyst assured the manager, “There are no inconsistencies or 

internal contradictions in this model.  Once we’ve agreed to accept some 

inaccuracy due to simplification, all the equations are ‘correct’ and perfectly 

valid mathematically.  Each of the relations referring to CDS space was 

contributed by a separate specialist.  Because of this interaction between 

three disciplines, C, D and S are determined and can no longer be considered 

as variables.  Any computational request which includes C, D or S as an 

independent variable must be considered unallowable.  Your request was not 

mathematically well-posed.” 

“All right,” conceded the manager, “then let me see T = f8(M,A).” 

“Sorry again,” said the analyst, “that request is also not allowable.  

Consider the relations 5 and 6 which are concerned with variables S, A, E, D 

and M.  As we’ve just discussed, S and D are held to constant values because 

of the internal constraint applied from another part of the model.  By 

applying M and A as independent variables, we are applying external 

constraint to the SAEDM space.  Thus, we have only one variable, E, which 

is neither internally or externally constrained, and which must conform to 

the two equations, 5 and 6.  Having two equations with only one unknown is 

a clear case of local overconstraint.  This computational request is also not 

well posed.” 

The manager sighed, “Then what computations are allowable of the 

form, T = f(p,q)?” 
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The analyst replied, “only these three: T = f9(E,P), T = f10(M,P) and T = 

f11(A,P).  All other computations of the form T = f(p,q) either overconstrain 

or underconstrain some part of the model.” 

These computations were plotted and given to the manager, along with 

the constant values for C, D and S.  After studying these results, the manager 

said, “OK, next I’d like to see some tradeoff curves.  Please show me the 

tradeoff between M and P, everything else being equal.” 

“By ‘everything else being equal’ do you mean: ‘hold all other variables 

at constant values?’” asked the analyst. 

“Yes, I suppose so,” responded the manager, fearing the worst. 

“In that case the desired tradeoff is not allowable,” said the analyst.  

“Once we agree that C can no longer be considered as a variable, E is the 

only variable that connects the submodel containing M with the submodel 

containing P.  If E is held to a constant value as you want, then the two 

submodels are essentially disconnected and the M vs. P tradeoff cannot be 

computed.” 

“What tradeoffs would be allowable?” 

“If we hold T only at a constant value, then M vs. P, A vs. P and E vs. P 

are allowable computations.” 

After all the allowable computations were performed and examined, the 

manager asked, “How were you able to come to your conclusions on the 

various computational allowabilities so rapidly?  Do you have a method that 

provides you special insight?” 

The analyst showed the manager Figure 1-1.  “Fundamentally, I attempt 

to get a right-brain view of the topology of the model.  Look at relation 5 for 

example.  In Figure 1-1a, I represent the relation by a square and show its 

three relevant variables S,E,A, -- represented by circles -- connected to it.  

Note that there are no arrowheads on these connections, since we don’t know 

in advance what the computational path will be.  In Figure 1-1b, the 

arrowheads indicate that S can be computed if A and E are known inputs.  

Similarly, Figures 1-1c and 1-1d show the computational flow directions for 

the computations of A and E respectively.” 

“Now, let’s expand our perspective to include relation 6 and its relevant 

variables, A,E,M and D.  Looking at Figure 1-2, we see that variables A and 

E are common to both relations 5 and 6; they do not have to be repeated.  

Note that the topology has developed a little circuit.” 

“Continuing in this manner, we can include the entire model, shown in 

Figure 1-3.  This structure is called a bipartite graph which provides a right-

brained view of the topological structure of the model of Table 1-1.  It’s 

really a metamodel since it does not contain the actual equations of the 

original model -- just the structural information necessary to determine 

internal consistency and computational allowability.  As in all bipartite 
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graphs, there are two distinct types of junctions: squares represent the 

relations, and circles represent the variables.  The arcs, or “graph edges” 

connect each relation to the variables that are relevant to it.  The “degree,” d, 

of each junction is defined as the number of edges which intersect it.” 

 

Figure 1-1. A right-brain view of relation 5, introducing the concept of representing relations 

by squares and variables by circles, as well as demonstrating that computation can flow 

through the relations in many directions. 

“This bipartite graph can be considered as a network for information 

flow.  The squares are essentially multidirectional function generators -- or 

algorithmic processors -- such that any output can be generated if all the 

other edges provide input.  The circles are essentially scalar measurements 

of the value of the variable that they represent.”   

“The above use of the bipartite graph for the representation of a math 

model can be easily extended to the representation of a computational 

request.  In the general format of a computational request, one specifies a 

dependent variable (the output) and a set of independent variables  and 

variables held constant (the input).  These input variables essentially have 

constraint applied to them -- in addition to the constraint applied to them by 
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their relevant relations -- and thus additional squares are appended to the 

bipartite graph. 

 

Figure 1-2. The perspective is expanded to include both relations 5 and 6, which share 

variables A and E. 

 

Figure 1-3. The Bipartite Graph: A Metamodel displaying consistency and computability. 

For example, assume that it is desired to have variables M and P be 

independent variables and variable A be held constant.  As is shown in 

Figure 1-4, the squares identified with “I” are appended to M and P, while 
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the square identified with “C” is appended to variable A.  In summary, the 

squares representing relations of the model imply intrinsic constraint, while 

the squares representing inputs to a computational request apply extrinsic 

constraint.  To emphasize this difference, the intrinsic constraint squares 

have a single border while the extrinsic constraint squares have a double 

border.” 

 

Figure 1-4. 

“Before a computational request is made, the edges of a bipartite graph 

model have no directionality.  Once the request is made, the input variables 
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now apply constraint to their neighbors and the edges take on a directionality 

which is determined by the request.  Essentially, the computation or 

constraint “flows” across the graph.” 

“For treelike graphs, the rules to map the sequential propagation of 

information -- or computation, or constraint -- are simple in the extreme: for 

d edges intersecting a square, information will propagate if there are (d-1) 

inputs and one output; for d edges intersecting a circle, information will 

propagate if there is one input and (d-1) outputs.”  (See Figures 1-1 and 1-4.)  

Note that a square with but a single arc intersecting it will automatically 

transmit constraint to the circle it is connected with, since in this case, d=1 

and (d-1)=0, thereby requiring no inputs to generate its output. 

“For graphs which contain circuits, mapping propagation is a little more 

complex.  Once we have gone as far as we can with the sequential rules 

above, we may require the rule of simultaneous propagation in the vicinity of 

a circuit: if a connected subgraph exists which contains an equal number of 

unpropagated squares and circles, then all its variables may be computed as 

if they were within a set of simultaneous equations.” 

“Now I can show you how easy it was to determine the computability of 

your computational requests.  Looking at Figure 1-5, we can easily see that 

relations 2, 3 and 4 form a submodel with an equal number of squares and 

circles.  This denotes three simultaneous equations covering three unknown 

variables and we should expect to be able to solve for the three variables, 

converting them from unknown variables to fixed parameters.  Thus, your 

request, T = f7(S,P) is unallowable since it assumes S is variable rather than 

a fixed parameter.  For the same reason, C and D cannot be independent 

variables either.  This type of constraint imposed on the model is called 

intrinsic because it existed even before you made any computational 

request.” 

“Now look at Figure 1-6, which shows constraint propagating from left to 

right along variables C, D and S for the above explained reason.  When you 

requested the computation T = f8(M,A) you established the two independent 

variables as a source of extrinsic constraint which propagates into the model 

and hopefully gives us a computation of T.  Let’s see what happens when we 

employ the sequential propagation rules for constraint flow.  Since M and A 

are extrinsic sources of constraint and D is an intrinsic source, we can satisfy 

the (d-1) inputs and one output rule for equation 6, thus producing a 

computation for variable E.  With A as an extrinsic source and S as an 

intrinsic source, we can satisfy the (d-1) inputs and one output rule for 

equation 5, thus producing another computation for variable E.  This is a 

case of local overconstraint, making the requested computation 

unallowable.” 
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Figure 1-5. T = f7(S,P) is not allowable. 

S cannot be an independent variable. 

“Don’t get discouraged, allowable computations exist also.  Figure 1-7 

displays the computational paths to compute T = f9(E,P).  Note how the 

extrinsic constraint flows from E and P combine with the intrinsic flow from 

C to satisfy the (d-1) inputs and one output rule to equation 1, resulting in 

the computation of T.  Also note that the entire model was not necessary for 

this computation, as equations 5 and 6 were irrelevant to it.” 
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Figure 1-6.  T = f8(M,A) is not allowable 

because of overconstraint on E. 

“Figure 1-8 shows a case where both sequential and simultaneous 

computational flow is used to satisfy the request, T = f10(M,P).  As originally 

constructed, the submodel comprised of the equations 5 and 6, together with 

their relevant variables S,A,E,D and M had two equations and four variables 

-- ‘two degrees of freedom’ as you put it.  Now, with the application of 

intrinsic constraint from S and D and extrinsic constraint from M, the extra 

degrees of freedom collapse to zero and we are left with two equations and 

two variables for this submodel.  We can expect to solve these two 

simultaneous equations in two unknowns to obtain both A and E.  Now 

applying the intrinsic constraint flow from C, the simultaneous constraint 

flow from E and the extrinsic constraint flow from P to equation 1, we can 

compute T.  Thus, this request is allowable.  In this case, the entire model 

was involved with the computation.” 

“Figure 1-9 shows the computational paths for the allowable request T = 

f11(A,P). The intrinsic input from S with the extrinsic input from A permit 

equation 5 to compute E which, using the 1 in, (d-1) out rule, propagates to 

both equations 6 and 1.  This input from E plus the intrinsic input from C 

and the extrinsic input from P permits 1 to compute T as requested.  By the 

way, this same bipartite graph shows that M = f12(A) is also allowable.” 
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Figure 1-7. T = f9(E,P) is allowable 

The constraint flow rules work OK. 

 “Now the term, ‘tradeoffs, with everything else held equal’ is fraught 

with ambiguity and most often used with insufficient rigor.  Figure 1-10 

displays how holding E at some constant value effectively decouples M and 

P into different, non-communicating subgraphs, rendering this tradeoff 

request unallowable. 

If any combination of C, D and S were to be held constant, two types of 

problem emerge.  First of all, the value to which they were held constant 

might not agree with the values computed from the 2, 3 and 4 simultaneous 

equations.  Even if they did agree, then propagating constraint across the 

graph would yield an underconstraint at equation 1 -- there would be an 

insufficient number of inputs to provide the desired computation of P.  The 

same underconstraint situation occurs if the variable held constant is A.  In 

fact, the only variable that can be held constant in order to provide the M vs 

P tradeoff is T.” 
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Figure 1-8. T = f10(M,P) is allowable 

A new BNS is formed; then the flow is OK. 

 

 
Figure 1-9. T = f11(A,P) is allowable 

M = f12(A) is also allowable. 
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Figure 1-10.  M = f13(P) “Tradeoff” is not allowable 

holding E constant decouples M and P is allowable. 

 

1.3 THE MANAGER AND ANALYST CONTINUE 

THEIR DIALOGUE 

The manager absorbed all these inputs soberly and after reviewing the 

results of his requested computations as well as others which were allowable 

on the original model, he complained, “I certainly can’t argue with your 

mathematical rigor.  But I’m still disappointed that I didn’t get more insight 

out of this model for my preliminary design phase -- I expected more, 

somehow.  It seems that whether a computation is allowable or not is like the 

flip of a coin.” 

“It’s worse than a coin flip; much worse.  You have just observed a very 

common and generally unappreciated feature of most math models,” the 

analyst responded.  “Indeed, the vast majority of all possible computational 

requests on almost all models are unallowable.  Some of the author’s 

graduate students performed an exhaustive analysis of the likelihood of 

computational allowability on 6- and 8-dimensional connected models of a 

variety of topologies.  The results are presented in detail in Appendix A, but 

the general allowability likelihoods were surprisingly low.  Of the 150 
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computational requests made on the 6-dimensional model, less than 15% 

were allowable.  Of the 1078 computational requests made on the 8-

dimensional model, less than 6% were allowable.  As the dimensionality of 

the model increases to dozens or hundreds of variables to address modern 

complex systems, then we can expect the allowability likelihood to diminish 

even further.  Needless to say, this is far worse than a coin flip.” 

“But don’t lose hope, you can still ‘negotiate’ a more useful model with 

your team of specialists -- after all, they have an even more limited systems 

view than you about the structure of the model and know even less about 

your intended use of it.” 

“For example, let’s examine the three relations, 2, 3 and 4, that caused 

the inadvertent source of intrinsic constraint.  Equation 4 is merely a 

definition between three types of cost -- this certainly seems OK.  Equation 3 

is the result of experience of how support costs increase with new 

technology developments -- this is OK based on the experience of many past 

systems and assumes that there will be no investment in the development 

phase to reduce supportability costs.  But now look at equation 2; it is not a 

representation of a definition or an experienced relationship, it is a policy 

statement by a person who is attempting to limit development costs so he can 

spend more on operations and support.  If, instead of demanding that K1 = 

0.3, he permitted K1 to merely be another variable in the model, the model 

dimensionality would increase to nine, and more importantly, the intrinsic 

source of constraint due to equations 2, 3 and 4 would be relieved (see 

Figure 1-11).  By this reasonable negotiation, we increase the candidates for 

independent variables to include C, D, S and also K1.  In fact, the operational 

chief who furnished equation 2 in the first place can now run studies to 

determine what value of K1 will maximize the systems level criterion, T, 

rather than arbitrarily fixing it at 0.3.” 

“Very interesting,” admitted the manager, “I can see a constructive 

integration between left- and right-brain views.  It would be extremely 

difficult to initiate negotiations of this type without the visibility provided by 

your bipartite graphs.   

I’m surprised I haven’t seen this methodology before.  But most real 

world problems are vastly more complex than this example, are they not?  

Wouldn’t analysts be driven crazy if they tried to work with snake charts that 

were many square meters in area?” 

“You’re absolutely correct,” agreed the analyst.  “Meaningful models 

quickly get large and even rigorous graphs become like a bundle of snakes, 

as you put it, and not really amenable to the analysis by inspection shown in 

the example.  Figure 1-12 displays the flow graph for a specific 

computational request on a model that’s about  times larger than the 

example.  The author actually was able to do consistency and allowability 
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analysis on this size model without using computer aids.  This was possible 

because the rules, and later, the theorems were developed using 

comprehensible models of low dimension, and then extending them 

rigorously to higher dimensionality.  For example, the model depicted in 

Figure 1-13 -- again about another  times larger than Figure 1-12 -- would 

undoubtedly boggle the mind of even the most focused analyst unless 

computer aids were available.   In order to communicate with the computer, 

a new construct -- called the ‘constraint matrix’, which has all the 

information inherent in the bipartite graph -- will be employed.” 

 

 
Figure 1-11. Changing K1 from a constant to a variable permits C, D, S, and K1 to act as 

independent variables in computations. 
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Figure 1-12. A sequential computational flow in a model about  times larger than the 

example. 

“Is there a name to this process?  How difficult would it be to become 

proficient in this technique?  What would the mathematical prerequisites 

be?” asked the manager. 

“The name of the process is ‘Constraint Theory’.  It is based on the 

author’s PhD dissertation [2] and subsequent published papers [3].  The only 

mathematical prerequisites are the simplest 5% of set theory and graph 

theory.  Just read this book; it is written for practical engineers, not 

professors or journal editors.” 
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Figure 1-13. A model about another  times larger certainly invites computer assistance. 

1.4 PRELIMINARY CONCLUSIONS 

Today’s dynamic world of systems development is virtually in an 

explosion of complexity and multidimensionality.  Computer science 

represents our best hope of controlling the complex multidimensionality; 

however a major barrier to its trustworthy use is the “well posed problem.” 

Constraint Theory addresses the two fundamental issues of the well-

posed problem:  

 

(a) Is a mathematical model internally consistent? 

(b) Are computational requests made of the model allowable? 

 

Even with simple 6- or 8-dimensional models, the vast majority of 

computational requests are not allowable from a well-posed standpoint. 

Constraint Theory also provides decision-making managers greater 

visibility into the assumptions and structure of the contributing relations 

underlying models and a basis for negotiating alterations to the model in 

order to attain greater benefit through desired computations. 

Constraint Theory’s only mathematical prerequisites are elementary set 

theory and graph theory. 
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Compared to the present practice of digital simulation which tightly 

integrates the mathematical model with rigid directions of algorithmic flow, 

Constraint Theory distinguishes the mathematical model from computational 

flow and permits multidirectional flow at the request of the analysts. 

The bipartite graph and its companion, the constraint matrix, provide 

insightful topological metamodels to both the model and its computations.  

They provide a viewpoint to establish a rigorous mathematical extension of 

the methodology to any number of dimensions. 
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1.5 A LITTLE WINDOW INTO FUTURE 

CHAPTERS1 

For those systems engineers and managers who wish to gain 

MULTIDIMENSIONAL INSIGHT 

almost comparable to their perceived understanding of 

NUMBER AND ARITHMETIC 

and learn the activities of 

NORBERT WIENER BEFORE CYBERNETICS 

and 

CLAUDE SHANNON BEFORE INFORMATION THEORY 

and ponder the deep nature of 

RELATIONS 

with their many diverse characterizations including 

BIPARTITE GRAPHS AND OTHER RIGHT BRAIN METAMODELS 

which assist in solving the venerable 

WELL-POSED PROBLEM 

by detecting and correcting the dual villains 

OVERCONSTRAINT AND UNDERCONSTRAINT 

and ferreting out the chief culprit of inadvertent constraint 

THE BASIC NODAL SQUARE 

from its hiding place deep within 

HOPELESSLY TANGLED CIRCUIT CLUSTERS 

by employing easy graph theoretic measurements of 

CIRCUIT RANK 

and 

CONSTRAINT POTENTIAL 

which locate these kernels of constraint within medium-sized models 

TRILLIONS OF TIMES 

more rapidly than would a random search or the use of Hall’s 1914 

theorem, 

THEN DO AS THE ANALYST SUGGESTS:  
READ THE BOOK! 

 
  

 
1 Inspired by Edgar Palmer’s delightful title page for his book, Graphical 

Evolution, John Wiley and Sons, New York, 1985 
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1.6 PROBLEMS FOR THE CURIOUS READER 

 

1. Provide three examples from your knowledge or experience of small 

models being developed and then integrated into total system 

models. 

2. Provide four examples of the utility of computers in the design, 

production or operation of complex systems, where humans would 

find it difficult or impossible to handle. 

3. Provide five examples of problems associated with computers 

applied to complex systems. 

4. Regarding the mathematical model depicted in Figure 1-3, which of 

the following computational requests are allowable and which are 

not allowable? 

 

For the allowable requests, draw the directed bipartite graph which 

depicts the computational flow.  For the unallowable requests, 

discuss the reason(s) for the unallowability. 

 

Computational Requests: 

M=f(A),  M=F(E),  E=f(A,M),  P=f(T,E),  P=f(T,A) 

 

5. For those computational requests which you deemed to be allowable, 

switch the dependent variable with one of the independent variables 

and check again for allowability.  Does this suggest a possible 

generalization? 





  

 

Chapter 2  THE FOUR-FOLD WAY 

 
How to Perceive Complex Mathematical Models and Well-Posed 

Problems 

 
 

 

2.1 PROLOGUE: THE MANAGER AND ANALYST 

DISCUSS THE ORIGINS OF 

MULTIDIMENSIONAL MODELS AND WELL-

POSEDNESS  

“Since complexity has grown so enormously in modern times,” the 

manager commented, “I presume that the motivations to develop techniques 

to manage it are relatively recent.” 

“On the contrary,” replied the analyst, “many of the concepts and 

examples of problem recognition are quite old -- ancient even.” 

Consider the old Indian story of the blind men trying to “understand” an 

elephant.  Depending on what is touched  -- the leg, ear, tail, trunk, or tusk -- 

the unknown object takes on the attributes of a tree, a leaf, a rope, a snake or 

a spear.  Thus, touching an aspect of a complex object is far removed from 

understanding the total integrated concept of “elephant.” 

A more recent story -- but still almost 2000 years old -- comes from the 

Talmud [5].  According to a commentary on the book of Genesis, on the day 

that the Lord created Man, He took truth and hurled it to the ground, 

smashing it into thousands of jagged pieces.  From then on, truth was 

dispersed, splintered into fragments like a jigsaw puzzle.  While a person 

might find a piece, it held little meaning until he joined with others who had 

painstakingly gained different pieces of the puzzle.  Only then, slowly and 
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deliberately, could they try to fit their pieces of Truth together -- to make 

some sense of things. 

Mankind’s yearning to understand the world over the eons has been aided 

by the development of mathematical models.  Groups of researchers, 

sometimes spanning centuries contribute their little fragments of data or 

understanding and eventually a general theory emerges.  In many cases, the 

consequences of the new theory are unexpected by the original contributors, 

but such is the trust given to mathematics, the unexpected, nonintuitive 

results are accepted given they are mathematically sound.  Examples: 

 In the 16th century, Tycho Brahe organized and extended the 

astronomical observations of Copernicus and others into the world’s 

finest set of data on stellar and planetary objects.  Johann Kepler 

took this data and formulated his famous three laws of planetary 

motion.  Despite his disappointment that planetary orbits were 

elliptical  -- rather than the circles the Greeks maintained were 

necessary for “celestial perfection” -- he convinced himself and the 

scientific world that the ellipse was the correct mathematical form 

for all the orbits in Tycho’s data base.   

 Decades later, Isaac Newton, with his greater mathematical 

understanding, was able to generalize Kepler’s laws into his law of 

universal gravitation -- a gigantic intellectual feat which unified the 

laws of the heavens and earth. 

 Centuries later, Albert Einstein provided a refinement of Newton’s 

theory of universal gravitation with his general theory of relativity.  

Alexander Friedmann solved Einstein’s equations and concluded 

that the universe began in a monstrous big bang.  This was so 

against Einstein’s instincts that he added a cosmological constant to 

his equations of relativity to remove the possibility of an expanding 

universe or the big bang.  However, the rationality of mathematics, 

as well as new data by Hubble and others have established 

Friedmann correct and Einstein has referred to the cosmological 

constant as his greatest blunder. 

So in Man’s quest to understand, mathematical modeling has taken an 

increasingly central role in building theories, and indeed in the scientific 

method itself.  The jagged shards of data, incomplete observations and 

subdimensional theories are pieced together rationally -- often resulting in 

unexpected conclusions and a deeper view of the world.  With the advent of 

modern computer technology, this central importance promises to increase 

far more. 

“You certainly won’t get arguments from most practitioners of science 

and technology about the importance of computers,” remarked the manager, 
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attempting to be agreeable.  “What you have said would be obvious to most 

observers.” 

“What is not obvious is that there are many barriers to the future efficient 

use of computers in the modeling of complex system,” rebutted the analyst. 

“I knew you’d say that,” said the manager, remembering the example of 

Chapter 1.  “What are these barriers?” 

“First of all,” began the analyst, “with all the increased capability and 

flexibility that the digital computer offers over the analog, there comes a 

subtle but pervasive disadvantage: the model and the computational requests 

placed on it are inextricably intertwined.  In almost all cases, the model is 

programmed to execute a specific computational flow, and when asked to 

alter the computation or switch input and output variables on the same 

model, the programmers tend to tell the managers, “can’t be done” or “too 

much trouble, or “can’t you make do with all that I’ve given you?” 

“Amen,” agreed the manager, “I’ve been told that many a time.  The 

programmers love to overwhelm you with data to show off their powerful 

computation. Their love of being responsive to your deep needs to 

understand what the model is teaching us is unfortunately much less.” 

Second, until early this century, the general concept of a relation has been 

quite fuzzy and philosophical.  Then in 1913, Norbert Wiener [6], before he 

became the father of cybernetics, suggested that the definition of a relation 

be imbedded within set theory -- one of the foundations of all mathematics.  

This served to add needed clarity and rigor to the concept of “relation.” 

Third, there was a general expectation that once a model was developed, 

there were no limitations on what computations could be asked of it.  Which 

questions are “well posed” and which are not?  In 1942, Claude Shannon [7], 

before he became the father of information theory, studied these issues on 

the recently developed mechanical differential analyzer -- the most powerful 

computer of its time, analog or digital.  He discovered that some of the 

variables desired to be dependant, or output variables -- based on the rotation 

of a shaft assigned to that variable -- were “free running”, providing no 

useful results.  In other cases the entire network of rotating shafts, gear trains 

and integrators would just “lock up” --again providing no useful results.  

These instances of “free running” and “lockup” are directly related to the 

concepts of under constraint and over constraint, which we will discuss later. 

Fourth, as was mentioned in Chapter 1, there is a vast dimensionality gap 

between the cognitive capability of man and machine.  Our challenge is to 

make the best partnerships between these cognitive entities.  As George 

Gamow [8] related in his charming book, “One, Two, Three, Infinity,” it was 

possible to survive with very limited numerical perceptions during our 

primitive beginnings, but the advent of mathematics, starting with 
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arithmetic, enormously enriched our lives and ability to understand and 

control the world. 

“I can see the issues are not as new as I thought,” admitted the manager. 

“Speaking of all the fathers, you mentioned Gamow -- wasn’t he also a 

student of Alexander Friedmann, the father of the big bang theory as well as 

the father of George Friedman, this book’s author?” 

“Almost correct! You continue to amaze me, I should develop more 

respect for you,” beamed the analyst.  “Yes, George Friedman’s father was 

Alexander Friedmann, but he was Friedmann the tailor, not Friedmann the 

cosmologist.  But let’s proceed to some substance.” 

“OK,” challenged the manager.  “I’m ready to enter the mathematical 

world you tell me that is necessary to bring order to this confusion and 

ambiguity.  Let’s see if the work will prove to be a worthwhile expenditure 

of intellectual energy.” 

“Fair enough,” agreed the analyst.  “In the remainder of this chapter, I 

want to introduce you to the very simplest foundations of set theory and 

graph theory, which will define for us with rigor and clarity the formerly 

vague concepts of relation, well-posed, consistent, allowable computation, 

overconstraint and underconstraint.  I believe it will be worth your effort.” 

We will begin our exploration of the foundations of constraint theory by 

presenting four interrelated views of the mathematical model: set theoretic, 

families of submodels, bipartite graph, and constraint matrix.  The first and 

second are complete and contain all the model’s detail.  The third and fourth 

are metamodels and contain only those abstractions which illuminate the 

model’s structure as it relates to consistency and computability. 

2.2  THE FIRST VIEW: SET THEORETIC 

Definition 1:  A set is a collection of elements.  A subset is a portion of 

this collection.  The number of elements may be finite, such as the planets of 

the solar system, or infinite, such as the points on a line.  A set with no 

elements at all is the null set.   (Figure 2-1) 

Definition 2:  A variable is an abstraction of one of the model’s 

characteristics which the analyst considers essential.  Associated with each 

variable is an allowable set of values.  (Figure 2-2) 

The set of variables which define the model can have enormous 

flexibility.  The variables can be continuous and quantitative, such as force, 

length, or temperature; they can be discrete, such as the variables in Boolean 

Algebra, or the solutions of Diophantine equations; they can be qualitative, 

such as hot, rich, salty or sick; or combinations of these. 
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Figure 2-1. It all begins with the simple concept of sets, subsets, and the null set. 

 

Figure 2-2. The sets of variables and their allowable values have enormous flexibility. 

Definition 3:  The model hyperspace is that multidimensional coordinate 

system formed by all the variables as axes, each of which is orthogonal to all 

the others.  (Figure 2-3)  This is simply a generalization of Descartes’ 
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unification of geometry and algebra.  We will frequently refer to these axes 

as Cartesian coordinates. 

 

Figure 2-3. The Model Hyperspace formed by the orthogonal axes of the variables is a useful 

abstraction, although in general it is impossible to be perceived. 

Definition 4: The product set of a set of variables is the set containing all 

possible combinations of the allowable values of all the variables.  In the 

case where all the variables are continuous over an infinite range, the 

product set is merely every point within the hyperspace defined by the set of 

variables.  (Figure 2-4) 
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Figure 2-4. The Product Set contains all possible combinations of the allowable sets of the 

variables' values. 

Definition 5: As suggested by Wiener and amplified by Bourbaki [9] and 

Ashby [10], a relation between a set of variables is defined as that subset 

within the product set of the variables which satisfies that relation.  (Figure 

2-5)  This relation can be between any number of variables and is not 

restricted to the binary relations of “relation theory.” 

The relations can also have enormous flexibility.  They can be linear or 

nonlinear, differential equation, partial differential equations, integral-

differential equations, logical equations, binary, ternary, etc, deterministic or 

probabilistic, inequality relations, or any combination of these.  In many 

cases the relations can be represented by data or “truth tables.” 

Definition 6:  Since a relation reduces the size of the original product set 

to a smaller, relation set, the relation can be said to constrain or apply a 

constraint to the original product set.  (Figure 2-6) 

Now that we have embedded the concept of mathematical models within 

set theory, we will need these four set theoretic operations for further 

developments:  (see definitions 7 and 8; Figure 2-7) 
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Figure 2-5. Wiener suggested that a "relation" between variables can be defined as the subset 

within the product set of these variables which satisfies it.  This not only provides rigor, but 

permits a tremendous variety of relation types. 

 

 

Figure 2-6. Relations, as well as variables held constant, constrain the product set into a much 

smaller subset. 
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Figure 2-7. Only four operations from set theory are employed for Constraint Theory. 

 

Definitions 7:  The union of sets A and B is the set of all points which 

are either in set A or in set B or both.  Symbolically: 

 

x   ⊂ A∪B  if:  x ⊂ A  or  x ⊂ B 
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The intersection of sets A and B is the set of all points which are in 

both A and B.  Symbolically: 

 

x  ⊂ A∩B  if:  x ⊂ A  and  x ⊂ B 
 

Definitions 8:  The projection of set A onto dimension x is the set of 

points within set A with all coordinates except x suppressed.  For example, if 

set A is the point (2,4) in the xy plane, then Prx (2,4) = 2 on the x axis only.  

Projection is a dimension reducing operation.  Symbolically: 

If A = (2,4) in xy-space   (point) 

PrxA = (x=2) in x-space  (point) 

 

PryA = (y=4) in y-space  (point) 

 

The extension of set A into dimension y is the set of all points within set 

A plus all possible values of the dimension y.  For example, if set A is the 

point (2,4) in the xy plane, then Exy(2,4) is the line x=2 where y varies over 

all its possible values.  Extension is a dimension increasing operation.  

Symbolically: 

ExyA = (x=2) in xy-space  (line) 

 

ExzA = (x=2)∩(y=4)  in xyz-space  (line) 

 

Definition 9:  y is a relevant variable with respect to relation  in xyz 

space means that there exist lines in xyz space parallel to the y axis that are 

neither entirely within nor entirely outside of the relation set.  Thus y has an 

effect on , or equivalently, the relation  constrains y.  Symbolically: 

 

If:   Exy(PrxzAthen y is relevant to 
 

Similarly, y is irrelevant with respect to relation  if: 

 

Exy(PrxzA) = A(Fig 2.8) 
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2.3 THE SECOND VIEW:  FAMILY OF 

SUBMODELS 

The set theoretic definition of relation was chosen to provide the firmest 

and broadest mathematical foundation for the work to follow.  

Unfortunately, it cannot also be claimed that this viewpoint is a practical 

way to describe the relation.  There are some occasions, such as tabulated or 

plotted functions, when it is necessary to list every point within the relation 

subset exhaustively.  In these cases, the relation subset is merely the union of 

all the listed points within the hyperspace of the model.  However, in the 

vast majority of mathematical models, far more efficient means are used to 

define the usually infinite number of points comprising the relation subset. 

These efficient means almost invariably involve the concept of 

describing the total model as the intersection or union (or both) of a set of 

submodels or algorithms.  (Figure 2-9)  This is necessary for at least two 

reasons:  First, and more obvious, a practical way of specifying infinite sets 

is required.  Second, and deeper, model builders cannot conceive of the 

entire model with their limited perceptual dimensionality and thus attempt to 

construct higher dimensional models by aggregating in some fashion a series 

of lower dimensional submodels.  The rules of aggregation employ the 

union, intersection, projection and extension operators defined previously. 

Frequently, a function is specified in a piecewise fashion; for example: 

 

x = 0   when t<0 

x = t
2
   when t>0 

 

In cases like this, the meaning is that the contribution of these two sets to 

the total model is the union of the sets.   

More frequently, a collection of “simultaneous equations” attempt to 

define the model; for example: 

 

x + y + z = 13 

x - y= 8 

 

In cases like this, the meaning is that the contribution of these two sets to 

the total model is the intersection of the sets. 

In general, the dimensionality of the total model is far greater than any of 

the contributing submodels.  Thus, the contributing submodels specify only a 

subset of the total model and, in order for them to be able to intersect in the 

total dimensional space, they must be extended into all the unspecified 

directions.  For example, let the total model space be xyz and let the relation 

subset for f1(x,y)=0 be A1 and the relation subset for f2(x,z)=0 be A2.  Thus, 
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before these two relations intersect, A1 must be extended in the missing z 

direction, and A2 must be extended in the missing y direction.  Defining Aas 

the total model relation, then: 

 

Figure 2-8. Relevancy of a variable with respect to a relation can be defined in terms of the 

projection and extension operations. 

AExz(A1)  ∩  Exy (A2) 

 

Now, once the model is constructed in the above fashion, an analyst 

wishes to have a subdimensional “view” -- or computational request --of this 

multidimensional relation.  In order for him to view the relation -- as AV -- 

with respect to the xy plane, he must ask for a projection of A onto the xy 

plane.  (Figure 2-10).  Symbolically: 

 

AV  =  Prxy(A
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Figure 2-9. Total model relations are generated by families of submodels which are combined 

by the union, intersection, extension and projection operations. 

If the analyst wishes to impose additional restrictions on his view, or 

computation, prior to the projection, he may hold any number of variables at 

a constant value.  In these cases, the relations corresponding to these 

variables held constant intersect the total model relation prior to the 

application of the projection operation. 
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Figure 2-10. After each generating relation is developed, it is extended into the full 

hyperdimensional space of the total model, forming the relation AΣ, which in turn is projected 

onto the subspace of the computational request, where it can be "viewed" by managers, 

analysts and others interested in learning from the model. 

2.4  THE THIRD VIEW:  THE BIPARTITE GRAPH 

Although there exist strong implications of topological structure in 

mathematical models and their computations, neither of the two views 

described above provides topological insight.  In order to provide this 

additional insight -- as well as allow a right-brain perspective to aid the 

dominantly left-brain views already presented -- graph theory will be 

applied.  
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Definitions 10:  A graph is a topological network of points, called 

junctions, or vertexes, and lines connecting some of them, called arcs, or 

edges.  A bipartite graph is a special graph having two disjoint sets of 

vertexes, {K} and {N}, such that any edge is only allowed to connect a vertex 

in {K} to a vertex in {N}.  

Definitions 11:  A model graph, is a bipartite graph with one set of 

vertexes, called nodes, corresponding to the model’s relations and the other 

set of vertexes, called knots, corresponding to the model’s variables.   A knot 

will be connected by an edge to a node only if the corresponding variable is 

relevant to the corresponding relation.  As an additional visual aid, nodes 

will be shown as squares and knots will be shown as circles.  (Figure 2-11) 

A model graph can be thought of merely as the circuit diagram of a 

computer hookup of the mathematical model: the nodes are function 

generators and the knots are wired connections that permit the values of the 

variables to pass from one function generator to another.  Thus, when the 

edges indicate no direction, the bipartite graph represents a model.  When 

the edges indicate specific directions, then the bipartite graph represents a 

computation on that model, tracking the flow of computation or constraint 

across the topological structure. 

2.5 THE FOURTH VIEW:  THE CONSTRAINT 

MATRIX 

The fourth and final viewpoint of the mathematical model is introduced 

primarily to provide a format amenable to computer processing.  As will be 

seen later, however, it also furnishes yet another mathematical perspective 

from which the proof of certain theorems can most easily be made. 

Definitions 12:  A constraint matrix is a rectangular array of elements 

that presents exactly the information inherent in a bipartite model graph, but 

is a form that can be easily stored and operated upon by a computer.  The 

columns correspond to variables and the rows correspond to relations.  An 

element in the ith column and the th row will be filled if the variable i is 

relevant to the relation , and empty if it is not.  (Fig 2.12)  Compactly 

stated, the rows, columns and elements of the constraint matrix are 

homomorphic to the nodes, knots and edges of the bipartite graph.  In order 

to indicate the direction of computational flow, the elements of the constraint 

matrix can take on the values: +1 or -1. 

To further emphasize the essential similarity between the bipartite graph 

and the constraint matrix, Figure 2-13 shows a logical evolutionary transition 

between the two representations.  As was stated earlier, both the bipartite 

graph and constraint matrix are “metamodels” and do not contain the full 

model information inherent in the set theoretic and family of submodels 
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versions.  Rather, they emphasize the structure and topology important to 

model consistency and computational allowability. 

2.6 MODEL CONSISTENCY AND 

COMPUTATIONAL ALLOWABILITY 

We are now prepared to present rigorous definitions in the area of the 

“well posed problem.”  Saying a problem is well posed means that the 

mathematical model is consistent and the computation is allowable. 

Definition 13:  A mathematical model is consistent means that its 

multidimensional relation set contains at least one point.  Symbolically, 

 

Athe null set 

 

Definition 14:  A computational request made on a model is allowable 

means that the projection of A onto the view space of the computation 

contains at least one point and in addition, each variable involved in the 

computation must be relevant to this projection in the sense of definition 9. 

Thus, if the projection onto the desired subspace that the analyst wants to 

view has been nulled out to no points at all, then the computation, the 

application of variables held constant or even the total model relation has 

been overconstrained.   On the other hand, if the projection has variables that 

are not relevant, these variables take on all their possible values, and are 

therefore underconstrained.  (Figure 2-14) 

2.7 THE MANAGER AND ANALYST CONTINUE 

THEIR DIALOGUE 

“You started off simply enough,” commented the manager.  “What can 

be easier than the definition of sets and their operations?  Also, your 

extension of Cartesian coordinates into hyperspace can be grasped by 

extrapolating from what we know of one, two and three dimensional spaces. 

As a teenager, I was inspired by Abbot’s Flatland [11] and Burger’s 

Sphereland [12].  These extensions are interesting philosophically, but do 

they really represent the real world and should they be the basis for applied 

mathematics?  I’ve heard professors argue that Descartes himself only was 

thinking of our familiar three dimensional space, not even the four 

dimensions for relativity theory, the eleven dimensions for string theory, and 

certainly not the hundreds of dimensions we need for a modern mathematical 

model.” 
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Figure 2-11. The bipartite graph is a metamodel of the full model which illuminates the 

model's structural and computational properties. 
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Figure 2-12. The Constraint Matrix is the companion to the bipartite graph and displays 

exactly the same information.  It is also a metamodel which contains only that information 

relating to the model's structural and computational properties. 
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Figure 2-13. Evolutionary transition from the bipartite graph to the constraint matrix. 

 “What do we really know about ‘reality,’” asked the analyst, launching 

into a minor tirade.  “Irrational numbers were once thought to be irrational, 

and still bear the label.  Negative numbers were once thought to be 

imaginary, but now play an essential role in every walk of science and 

finance.  Zero was originally thought to be completely unworthy of serious 

consideration, but we would be crippled if we stuck to the awkward Roman 
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numerals.  Imaginary numbers were originally considered as only interesting 

abstractions, but today form the basis of several very practical integral 

transforms and are essential to almost every walk of electrical engineering. 

Then there are loops (which we will consider in Chapter Four).  Early in 

control theory, feedback loops were considered impossible, in logic, self-

referential statements were considered illogical, and in decision theory, 

intransitive preferences are still considered irrational.” 

“So, in light of the above, we face this philosophical question: ‘Does 

hyperdimensional space have to correspond to the space-time continuum of 

our universe in order to be useful for the understanding of mathematical 

models?  I claim the answer is ‘no’ and most mathematicians use as many 

dimensions as they need.  Descartes’ crucial intellectual leap was to enrich 

the algebraic relations with geometric concepts; the extrapolation to any 

number of dimensions should be trusted as a straightforward extension.” 

“OK,” agreed the manager, feeling a little over-answered.  “Your use of 

the projection and extension operators was less familiar to me and I never 

really thought how families of submodels contributed to the total model.  

The concept that a computational request is really a projection of the total 

model onto a subspace was really beyond my experience.  But now I can see 

the value of this construct.  The projection operator provides the 

dimensionally-limited human an understandable perspective of an 

inconceivable multi-dimensional relation.” 

“Or to further extend the lingo that managers like to use,” added the 

analyst, “if you choose the right subdimensional viewspace, you get the ‘best 

angle’ on a complex problem -- something you guys are always trying to 

do.” 

“Figure 2-14 is a good summary of most of the previous ideas.  Referring 

to the ancient stories at the beginning of this chapter, the blind men each 

observing the elephant from different aspects form pitifully incomplete 

shards of truth, generating relations which are combined into the ‘total truth.’  

However, since we are hopelessly subdimensional, we cannot perceive or 

understand the total truth, A.  Instead, we turn it every which way and 

attempt to observe it from many different angles, some of which may help us 

to understand ‘more deeply.’  Disappointingly, for most of the directions we 

attempt to look at the relation, we will get no more information.  That is the 

agony of asking questions which are not well-posed.” 

“Bottom line, to use more management jargon,” summarized the analyst, 

“these four views were deemed necessary by the author to understand the 

underlying foundations of models, computations and well-posedness, rather 

than rely on the rather opaque, algorithmic crankturning he had been taught 

in all his courses in mathematics.” 
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Figure 2-14. In order for a problem to be well-posed, the mathematical model must be 

consistent and the computation must be allowable.  Consistency requires that the hyper-

dimensional relation not be the null set.  Allowability requires that all the variables of the 

requested computation be relevant to the projection of the total relation onto the 

computational subspace. 
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2.8  CHAPTER SUMMARY 

 Four interrelated views of a mathematical model and its 

computations have been presented: set theoretic, family of 

submodels, bipartite graph and constraint matrix.  (Figure 2-15).  

The first two are full models, containing all the detail necessary 

for final construction and computation; the latter two are 

metamodels, and are abstractions of the first two which 

concentrate on the topological and computational features.  In a 

strong sense, the metamodels can be considered to provide an 

overarching management perspective on consistency and 

computability issues.  Without this perspective, those who 

attempt to build models and make computations on them will 

blunder into difficulties due to either inconsistencies in the model 

or unallowabililties in the computations -- in short, the traditional 

well posed problems.  In any case, once the “well-posedness” of 

the models and computations have been analyzed and managed 

by the metamodels, the full models must then be employed for 

the actual computations. 

 The concept of “set” has been used as frequently in this chapter 

as the word “system” has been used in a book on systems 

engineering.  This was done deliberately because -- despite the 

apparent simplicity of the concept -- it is far more precise a 

concept than “system” and its applicability is wide ranging.   

 The set was used to define a relation between variables.  The 

concept of set was also used to identify: 

o the allowable values of a variable 

o the possible values of a product set 

o collections of variables -- which can represent 

computational requests 

o collections of relations -- which can represent submodels 

o subsets of bipartite graph vertexes called knots 

o subsets of bipartite graph vertexes called nodes 

o collection of edges connecting subsets of the knots and 

nodes 

o constraint matrix columns; homomorphic to knots and 

variables 

o constraint matrix rows; homomorphic to nodes and 

relations 

o constraint matrix elements; homomorphic to edges and 

relevancies 
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  

 Figure 2-15. The four representations of a mathematical model.  The first two are full models 

and the latter two are metamodels. 
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o power set of the knots:  all definable computational 

requests 

o power set of the nodes:  all possible submodels 

 

 Perhaps Friedman’s greatest contribution was the recognition 

that very useful metamodels of the mathematical model’s 

variables, relations and relevancies are the bipartite graph’s 

knots, nodes and edges and the companion matrix’s rows, 

columns and elements.   

 This chapter provided the foundation for a building; its 

construction and use will continue in subsequent chapters. 

 

2.9  PROBLEMS FOR THE INTERESTED STUDENT 

1. Provide a real-world example of a three-dimensional product set 

where one dimension is continuous, another is discrete and a third is 

defined in intervals. 

 

2. Employing detailed algebraic equations in three-dimensional space, 

show an example of y being relevant to the model and another 

example of y being irrelevant. 

 

3. For a three-dimensional model, show how ∩,∪, Pr and Ex can be 

used to combine a family of three algebraic equations into the total 

model. 

 

4. Draw the constraint matrix for Figures 1, 5, 6 and 7 of Chapter One. 

 

5. Draw the constraint matrix for Figure 3 of Chapter One.  Can you 

suggest how the term, “Basic Nodal Square” was developed?   

 

6. Regarding the mathematical model depicted in Figure 1-3, which of 

the following computational requests are allowable and which are 

not allowable? 

 

For the allowable requests, draw the directed bipartite graph which 

depicts the computational flow.  For the unallowable requests, 

discuss the reason(s) for the unallowability. 

 

Computational Requests: 

E=f(T,M),  A=f(T,E),  A=f(P,M) 



  

 

Chapter 3  GENERAL RESULTS 

 
From Protomath to Math to Metamath 

 
 

3.1    LANGUAGE AND MATHEMATICS 

“You’ve opened my mind to many new concepts and definitions, but I 

don’t see where this is all leading,” complained the manager.  “Are there 

results I can use?  I feel as if I’m learning the vocabulary of a new and rich 

language, but I can’t make sentences.” 

“Your language/mathematics analogy is very apt,” complimented the 

analyst.  “Before the emergence of modern language humanity had probably 

millions of years of protolanguage.  Words were formed to represent 

abstractions from the observed world and originally served to communicate 

basic ideas such as danger warnings or cooperation in game hunts.  Full 

language appeared when the words were organized into complete-thought 

sentences employing grammar and syntax -- which has a remarkable 

worldwide structural similarity over all known languages.  Similarly, before 

the emergence of mathematics there were probably thousands of years of 

protomathematics.  Concepts of number and geometry were employed in 

prehistoric times in practical ways for commerce and property surveys. 

Full mathematics appeared with the organization of “math facts” into a 

logical structure of definitions, relations and proofs -- which also have a 

remarkable similarity across all cultures and languages.” 

“Although the two appear different superficially, mathematics is 

completely imbedded within language.  All the rules of math and logic of 

proofs are linguistic.  The applicability of language to the world is orders of 

magnitude greater than math; however when math is applicable, it offers 

these important advantages:  precision, consistency, calculatability, 

generalizability, stability across cultures and languages, and perhaps most 
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importantly, provides a trustworthy vehicle to deduce conclusions from a 

great diversity of inputs.  True, it can be argued that math treats only a tiny 

percentage of the world compared to language, but it was crucial to all the 

advances of science, technology and economics which contribute to our 

modern civilization.”   

“Now just as math employed higher order abstractions based in language, 

metamathematics employs abstractions of objects based in mathematics.  

Constraint Theory is a form of metamathematics which employs the bipartite 

graph and constraint matrix whose elements are the mathematical objects of 

variable and relation.  Thus, constraint theory is yet one more step removed 

from the understanding we attain from natural language.  That may be a 

disadvantage if it appears the mathematical complexity is formidable -- but I 

argue the complexity is well below that of other branches of math.  The 

advantage is that metamodels of this type actually can bring us closer to 

methods of plausible reasoning and further enable mathematics to intensify 

its beneficial augmentation of language in all the dimensions listed above.” 

“There is a fundamental mystery pondered by writers such as Devlin 

[13]: ‘Why does language come so easily to virtually every human and why 

is math so hard -- even terrifying?’  A typical child acquires a vocabulary of 

several thousand words and speaks in a respectable grammar even before 

formal education begins.  Protomath is also acquired quite early.  But 

education in math comes much later and never finds a comfortable place in 

the minds of most people.  Devlin argues that the primary reason is that these 

people never live in what he calls the “math house” where the objects and 

logic of mathematics become as familar as the everyday objects around 

which we form language.  Even highly trained engineers who successfully 

apply integral transforms in the design of sophisticated control systems in 

their early careers are loath to trust math applied to model building or 

decision making as they take on management roles in their later careers.  

You, sir, are an excellent example of this math phobia in highly educated 

people.” 

The manager’s glazed over eyes sharpened.  “I would resent that remark, 

but I don’t disagree enough.  I’ve been exposed too many times to 

mathematicians claiming to serve me by narrowly focusing on a small part 

of the problem -- the only part where math is applicable -- and by attempting 

to impress by presenting their incomprehensible results within a forest of 

incomprehensible derivations.  I’ve often wondered if the word ‘analyst’ had 

its roots in ‘anal retentive.’  Invariably, I had to come in to add the necessary 

additional dimensions and provide management judgment -- whatever that 

means.  Admittedly, when I did do math myself, I trusted that the proofs I 

was given were correct, and tended to skip over them as I was a student.  
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Even the formulas and rules which I applied were not always provided with 

the necessary assumptions to clarify their domains of applicability.” 

“A major advantage that math has over language is its generizability into 

domains which were previously incomprehensible,” the analyst pontificated.  

As was mentioned in Chapter 1, we cannot really perceive numbers over 

seven or so -- the way that we (and many animals) can perceive 1, 2 and 3.  

But we so trust the algorithms of arithmetic that we at least have a feeling or 

control of understanding that which we need to know about numbers into the 

millions or billions: ‘which number is greater and by how much?’ ‘is number 

a slightly greater than b or is it an order of magnitude greater?’  These useful 

answers can be obtained without fully perceiving large numbers.  Similarly, 

the objective of constraint theory is to provide the manager of large models a 

trustworthy method to obtain answers to certain important properties of 

models: ‘Is the model consistent?’, ‘Is the computation a=f(b,z) allowable on 

this model?’  These answers are useful whether or not the manager can 

actually perceive the very high dimensions involved.” 

“OK, thanks for the sermon,” said the manager, feeling that the 

explanations were somewhat long.  “Let’s see how you can bring me into 

Devlin’s “math house” and what trustworthy results you have to provide.” 

3.2   MOST GENERAL TRUSTWORTHY RESULTS 

Theorem 1:  If a model is inconsistent, then no computational requests 

on it are allowable. 

Proof:  By Definition 13, the relation set of an inconsistent model is the 

null set.  By Definition 14, for a computational request to be allowable, the 

projection of the model relation set onto the view space must have at least 

one point.  But the projection of a null set onto any view space must also be 

the null set.  Thus, if the model is inconsistent, any request is unallowable.  

QED 

“Is the reverse also true?” asked the manager.  “Depends on what you 

mean by ‘reverse’,” responded the analyst.  “If you mean, ‘does 

noncomputabililty imply inconsistency?,’ the answer is ‘no’ -- there are 

other reasons for noncomputability than inconsistency; refer to Appendix A.  

If you mean, ‘does consistency imply computability?’ the answer is ‘no’ 

again for the same reason.  But if you mean, “does computability imply 

consistency,’ then the answer is ‘yes’.  We have to be careful as to how we 

employ double negatives; not all natural languages recognize a double 

negative as a positive.  A mathematical implication which is two-way is 

called ‘iff’ -- if and only if.”  See Appendix C for a more thorough 

discussion of this logic.  But I fear we are digressing from the main thread 

here. 
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“I couldn’t fail to disagree with you less,” commented the manager, self-

referentially. 

Theorem 2:  If any submodel of a total model is inconsistent, then the 

entire model is inconsistent. 

Proof:  The total model relation set is the intersection of the relation sets 

of all its submodels.  Since the intersection of any set with the null set is the 

null set, if any submodel relation is the null set, then the total model will also 

become the null set and thus, by Definition 13, will be inconsistent.  QED. 

“These are a good start it seems,” commented the manager, but aren’t 

they rather intuitive?  And thus perhaps not so useful?” 

“Well I hope all the remaining theorems will be as intuitive, or at least as 

plausible as these,” the analyst responded.  “As far as useful goes, it tells us 

to check the consistency of a model before we attempt computations on it.  

In my experience, most of the time computations fail, the model is checked 

only after much wasted effort.  The utility goes further: even if a part of the 

model that is not used in the computation is inconsistent, then the 

computation is not allowable.  Look at Figure 3-1.  At first glance, it would 

appear that the computational request d=f(a,c) is allowable.  However, 

observe that on the left side of the model, we have over three relations 

constraining the two variables e and f; this is a serious case of overconstraint 

-- that is, the relation set for the submodel containing e and f is the null set.  

Therefore, no computations, including d=f(a,c), are allowable.” 

 

Figure 3-1. Inconsistency in one part of the model poisoning the whole model. 

“OK, that seems nontrivial,” admitted the manager.  “I would have 

treated the d=f(a,c) computation as a work in progress and suppressed the 

remainder of the model as requiring repair.  I note that even if the 

overconstrained submodel were reduced to just one basic nodal square, a 

would be intrinsically constrained, thereby not permitting a to be an 

independent variable.” 

“Excellent observation,” complimented the analyst, “but you rarely know 

in advance all the computational requests you wish to make on a model and 
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what portions of the model will be required for the request’s computational 

paths.  Thus, any submodel with a null set relation set can poison the entire 

model.  An even more severe case is shown in Figure 3-2.  Here the 

overconstrained submodel is in a completely separated component -- there 

being no possible computational paths between it and the computational 

request -- and the total model is still inconsistent, rendering all 

computational requests unallowable.” 

 

Figure 3-2. Inconsistency even in a disconnected component poisoning the whole model. 

“Checking total model consistency seems to be a formidable task; every 

pair of relations should be examined to see if they produce a null set,” 

worried the manager. 

“It’s nowhere near that bad,” the analyst reassured, “look at Theorems 3 

and 4.” 

Theorem 3:  If two relations have no relevant variables in common, they 

are consistent with each other. 

Proof:  Assume two relations: relation 1 with relevant variables a,b,c,..  

and relation 2 with relevant variables r,s,t,.. .  Choose any point in relation 1 

--say a1,b1,c1...  -- and extend it into r,s,t.. space, resulting in the set defined 

by: {a1,b1,c1....r,s,t...}.  Similarly, choose any point in relation 2 -- say 

r2,s2,t2... -- and extend it into a,b,c... space, resulting in the set defined by 

{a,b,c..r2,s2,t2..}. 

Now since the r,s,t of the relation 1 extension can take on any value, set 

them equal to the r2,s2,t2  of the relation 2 extension, and set the a,b,c of the 

relation 2 extension equal to the a1,b1,c1 of the relation 1 extension.  Thus the 

two sets of coordinates are identical and we have guaranteed that there is at 

least one point in the intersection of the extensions of the two relations.  

QED.  (See Figure 3-3 for a simple example of this process.) 

“This substantially eases the task implied by Theorem 2; only relations 

which are ‘adjacent’ -- that is, have relevant variables in common -- can 

engender inconsistency.” 
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Figure 3-3. A simple example of the consistency of relations without common relevant 

variables. 

Definition 15:  A component of a graph G is a maximal connected sub-

graph of G. In other words, a connected sub-graph H is a component of G if 

H is not a proper sub-graph of any connected sub-graph of G (Gross & 

Yellen, 2006). 

Theorem 4:  If two connected components are internally consistent, they 

are consistent with each other. 

Proof:  Any two relations which lie in separate components cannot share 

variables in common.  Therefore, by Theorem 3, they are consistent.  QED. 

Theorem 5:  No computations involving variables from different 

components are allowable. 

Proof:  For computational allowability, Definition 14 requires that the 

intersection of the projections of the relations not be the null set and that the 

request’s variables be relevant to it.  The first requirement is satisfied but -- 

because there are no relevant variables across disconnected sets -- the second 

requirement is not met.  Thus all computations across disconnected sets are 

not allowable.  QED. 

“Now that’s certainly plausible,” said the manager.  “I wouldn’t expect 

that one could compute across disconnected components which are really 

islands in separate universes.”   

“Agreed,” agreed the analyst. 

Theorem 6:  The allowability of a computational request is independent 

of permutations of its dependent and independent variables. 

Proof:  An allowable computational request will have a satisfactory 

relation set in the sense of Figure 2.14.  Choosing any dependent variable out 

of the request’s variables by merely rotating the view space will not alter the 

validity of the relation set.  QED. 

Theorem 7:  All possible computational requests on a model with K 

knots (variables) is the power set of the knots and its number is equal to 2
K
. 

Proof:  Each computational request is a subset of the set of knots and can 

be uniquely identified with a binary number whose length equals the number 
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of knots.  Therefore the number of subsets in the set of K knots equals 2
K
.  

QED.  Refer to Figure 3-4 for demonstrations and simple examples. 

 

Figure 3-4. Three demonstrations that the power set of the set of N elements contains 2N 

subsets. 

“If it weren’t for Theorem 6,” commented the manager, “the number of 

possible computational requests predicted by Theorem 7 would be far larger, 

I presume.” 

“Certainly,” agreed the analyst, “for each of the 2
K
 subsets of dimension 

d, one could choose d dependent variables, enormously increasing the 

possible computational requests.  Of course, one could still choose different 

ways to plot the results of the computational requests, but that is really 
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outside the concern of constraint theory, which is mainly concerned about 

the fundamental allowability of any of the plots.” 

Theorem 8:  All possible submodels of a model with N nodes (relations) 

is the power set of N and its number equals 2
N
. 

Proof:  This proof is identical to that of Theorem 7; merely replace K 

with N.  

Definition 16:  A tree is that structure within a connected component of a 

graph such that there is exactly one path connecting every pair of vertices. 

Definition 17:  A circuit cluster is that structure within a connected 

component of a graph such that there are two or more independent paths 

connecting every pair of vertices.  Independent paths share only their initial 

and terminal vertices.  Adjacent circuits are circuits which share at least one 

edge. 

Refer to Figure 3-5 for examples of trees, circuits, adjacent circuits and 

circuit clusters. 

Definition 18:  A universal relation is a relation which does not limit any 

of its relevant variables to a given range.  For example, x+y=5 and m=n
3 
are 

universal relations, but s
2
+t

2
=3 and z>4 are not. 

Theorem 9:  Any set of universal relations whose bipartite graph has a 

tree structure is consistent. 

Proof:  First, prove that any two universal relations that have only one 

relevant variable in common are consistent.  (Inconsistency could occur if 

the common variable had incompatible constraints placed on it by the two 

relations, but all the variables, by Definition 18, have unlimited ranges.)   

Then append additional relations to the model in each case with only one 

variable in common, forming a tree.  Consistency will be maintained at each 

step.  QED. 

3.3  CLASSES OF RELATIONS 

Thus far, all the results and discussions of consistency and computability 

have been on the basis of any conceivable type of general relation.  As was 

discussed in Chapter 2, relations can take on an extremely wide variety of 

properties.  In order to progress towards effective tools for the management 

of multidimensional math models, it will be necessary to define three 

important classes of relations. 
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Figure 3-5. Examples of trees, circuits, adjacent circuits and circuit clusters. 

Definition 19:  Relation classes:  Consider the general relation A2.  Let l 

be a line through any point in A2.  Let A2∩l be the intersection of A2 with l, 

and let PrlA2  be the projection of A2 onto l.  Then: 

 A2 is a discrete relation if both A2∩l and PrlA2 are point sets of 

measure zero. 
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 A2 is a continuum relation if A2∩l is a point set and PrlA2 is an 

interval set of non-zero measure. 

 A2 is an interval relation if both A2∩l and PrlA2 are interval sets 

of non-zero measure. 

Examples of these three relation classes are given in Figures 3-6 and 3-

6A. 

 

Figure 3-6. Examples of the three relation classes. 

These three relation classes will be treated in the next two chapters.  We 

will discuss the continuum relation class first - in Chapter 4 - because it can 

be argued that it is the most important for math model building and also 

because constraint theory happens to be most useful for this class.  Chapter 6 

will treat discrete and interval relations. 
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Figure 3-6A. Three relation classes can be defined - at least locally - by the number of points 

in their intersections with a line and the number of points in their projections onto a line. 

3.4    MANAGER AND ANALYST REVISITED 

“I’m beginning to see what you mean by ‘living in a math house,’” the 

manager complained mildly.  “Although all the definitions and Theorem 

proofs are imbedded in natural language, they appear far ‘tighter and 

rigorous’ than the ambiguities of normal conversation.  It certainly doesn’t 

make for fast reading.  Especially if one wants to understand the proofs.” 

“I’m trying to make it as plausible and painless as I can,” responded the 

analyst.  “I encourage you to read the proofs and get in the spirit with the 

mathematical rhythm of this theory.  Otherwise, you won’t gain as much 

confidence in the trustworthiness of extending these results into the high 

dimensions that we need in order to manage modern models.  So far, you’ve 

just entered the foyer of the ‘math house’; I want to show you at least three 

more rooms.” 
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3.5    CHAPTER SUMMARY 

 Language and mathematics are two of humanity’s greatest gifts and 

are remarkably similar.  However mathematics is more precise and 

is embedded within language which is more general.  We need to 

become familiar with ‘the math house’ in order to extend our results 

to unimaginably high dimensions. 

 Model consistency is a necessary requirement for computational 

allowability.  If any part of a model is inconsistent, the entire model 

is therefore inconsistent, but relations with no common relevant 

variables are consistent.  Universal relations with a tree graph 

structure will always be consistent.  Computations across 

disconnected components are not computable. 

 All possible computational requests are the power set of the set of 

the variables and they number 2
K
; all possible submodels are the 

power set of the relations and they number 2
N
. 

 In order to provide a basis for more specific results, three classes of 

relations are defined:  

o discrete, dealing mainly with point sets such as boolean 

logic;  

o continuum, dealing mainly with continuous curves; and  

o interval, dealing mainly with densely packed sets such as 

x>5. 

 

 

3.6   PROBLEMS FOR THE GENERAL STUDENT 

1.   Construct a simple example for Theorem 1 showing that 

consistency is necessary for computability. 

2.   In the example given in chapter 1, was the model provided 

consistent?  If so, why weren’t all the computational requests 

allowable?  If not, why were some of the requests allowable? 

3.   Construct a simple example for Theorem 2 showing that any 

submodel inconsistency “poisons” the entire model. 

4.   Given a model with K=4, show all the possible computational 

requests and show that they number 2
K
.  (For the sake of 

completeness, the full set and the empty set are considered valid 

“subsets”.) 

5.   Construct a simple example demonstrating the validity of Theorem 

9. 



  

 

Chapter 4  REGULAR RELATIONS 

 
Searching for the Kernels of Constraint 

 
 

 

4.1  COGNITIVE BARRIERS TO CIRCUITS 

“I must admit that the foyer of the math house was fascinating,” said the 

manager, “and the rigorous structure based on the previous definitions was 

quite impressive.  With the theorems and their proofs, I guess I’ve 

progressed from protomath to full math.  However, it was a little like the ten 

commandments: after an admonition on how much I should respect and 

revere this central philosophy, all I got was a series of negative statements: 

can’t kill, can’t commit adultery, can’t compute if inconsistent...  I’m still 

looking for useful rules which will permit me to manage, as this book’s title 

promises.” 

“This Chapter will present many rules and procedures by which you can 

more effectively manage large math models,” assured the analyst.  “In fact, it 

will end with a Constraint Theory Toolkit which summarizes the most useful 

of the theorems, rules and procedures.” 

“Central to many of the rules will be the treatment of circuits and loops 

within extremely tangled bipartite graphs.  Many researchers appear to have 

a basic phobia about circuits.  Logicians dislike self-referential loops 

because of the potential for paradoxes.  Early in the field of control systems, 

feedback was thought to be illogical.  Even von Neumann classified 

intransitive loops of preferences as ‘irrational.’  (See Figure 4-1)  Devlin 

[12] noted that the common structure of language worldwide was treelike 

and hypothesized that ‘our cognitive wiring favors trees.’  So I’m asking you 

to keep an open mind on the concept and value of circuits and loops.” 
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Figure 4-1. The concept of circuits has initially appeared to be contrary to rational thought, 

but their careful management has led to many advances. 

“I’ll try, but this is the briefest philosophical introduction you’ve given to 

any chapter so far,” chided the manager.  “I’ve attempted to enjoy your 

pontifications on cognitive science, language, origins of mathematics and the 

universe.  Are we properly warmed up for the meat of this chapter?” 
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“Yes, I hope so,” responded the analyst.  “We have more material in this 

chapter than any other.  It is the heart of Constraint Theory so far in its 

development.  I’m anxious to get going.” 

4.2 NODE, KNOT AND BASIC NODAL SQUARE 

SANCTIFICATION 

Definiton 20  A pair of relations are locally universal if the ranges and 

domains of their relevant variables are mutually compatible.  In other words, 

any output from one relation is an acceptable input to the other.  For example 

the circle x
2
+y

2
=1 is locally universal with x=0, but not with x=3. 

Postulate 1:  Model builders inherently wish their relations to be locally 

universal. 

Although an important assumption for constraint theory analysis, the 

actual testing of universality can only be accomplished on the full model; the 

constraint theory metamodels do not have sufficient information. 

Definition 21:  A set of regular relations are continuum relations which 

are locally universal with all their interacting relations. 

Definitions 22:  The constraint potential of a graph G is defined as p(G) 

and equals the excess of nodes over knots: p(G)=N-K.  It is the negative of 

the “degrees of freedom” notion used in Chapter 1.  It will be useful to 

define two circumstances where constraint potential is insightful: 

 

pi(G)=intrinsic constraint potential; prior to any computational 

request, 

 

pr(G)=resultant constraint potential; after the application of 

independent variables, constants and computational flow from 

neighboring portions of the bipartite graph. 

 

 

Definition 23:  The degree of a vertex, d(v), equals the number of arcs 

that intersect that vertex.  For the node vertex, d(n), it is the number of 

variables that are relevant to the relation; for the knot vertex, d(k), it is the 

number of relations which employ that variable.  Refer to Figure 4-2 for 

examples. 

Thus, for example, the constraint potential of a node with degree d(n) is 

merely 1-d(v) since it represents one node attached to d(n) knots.  In general, 

the average degree of all of a graph’s vertices is a strong indication of the 

graph’s connectivity. 

Theorem 10:  For a model graph of regular relations, with a tree-like 

topological structure, the computational rules are:   
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for nodes: d(n)-1 inputs permit 1 output;  

 

for knots: 1 input permits d(k)-1 outputs. 

 

Proof:  Consider the d(n)-dimensional space of any given node: if d(n)-1 

of these dimensions are chosen as inputs, then this will define a line which 

will intersect the relation in a point (or set of points), by definition 19, since 

the relation was assumed to be regular and thus a continuum relation.  QED1. 
The single output of each of these computations can then propagate to all 

other d(k)-1 nodes for which this variable is relevant and, by Definition 21, 

will be compatible with all of them because a regular relation is locally 

universal.  QED2. 

Thus the intuitively appealing rules which were employed so extensively 

in Chapter 1 are now rigorously “sanctified” by Theorem 10.  This concept 

will be generalized to all topological structures later in the chapter. 

 

Figure 4-2. The degree of a vertex is merely the number of edges which intersect it. 

Definitions 24:  If any node on the path has a resultant constraint 

potential greater than zero, the computational request is not allowable due to 

overconstraint.  If any node on the path has a resultant constraint potential 

less than zero, the computational request is not allowable due to 

underconstraint.  If the entire path has a resultant constraint potential of 

zero, the computational request is perfectly constrained and is allowable.  

Refer to Figure 4-3. 

However, most math models -- even those which could be called very 

loosely connected -- will have bipartite graphs with circuit structures.  When 

the computational flow described by the above rules reaches the vicinity of a 

circuit, over- and underconstraint cannot always be determined 
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unambiguously, and a new rule will be required.  For this purpose, it is 

necessary to define a special type of structure within the bipartite graph and 

constraint matrix: 

Definitions 25:  A Nodal Square, NS, is a submodel of a math model 

such that its constraint potential, p(NS)=0.  A Basic Nodal Square, BNS, is a 

nodal square which does not contain a smaller nodal square within it. 

 

Figure 4-3. Computational (constraint) flow in trees requires only the simple rules: "d(n)-1 in, 

1 out for nodes; and 1 in, d(k)-1 out for knots." 

Fundamentally, nodal squares and basic nodal squares have the property 

that, in their local submodel, the number of variables equal the number of 

relations.  Examples are shown in Figure 4-4.  Recall that submodels are 

formed from the total model by grouping subsets of the nodes (or rows of the 

constraint matrix); thus the term, “nodal” squares if all the elements of the 

constraint matrix are captured in a “square.”  In this context, groupings of 
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the knots (or columns of the constraint matrix) have no meaning.  As defined 

earlier, groupings of the variables form the power set of all possible 

computational requests. 

 

Figure 4-4. A Nodal Square, NS, is a grouping of the rows of a constraint matrix, [C], such 

that all the relevant elements are captured within a square.  That is, the submodel has an equal 

number of relations and variables.  A Basic Nodal Square, BNS, is an NS which does not 

have a smaller NS within it. 

This brings us to the second computational theorem of this chapter: 

Theorem 11:  Every Basic Nodal Square (BNS) of regular relations 

exerts point constraint on each of its relevant variables.  That is, all its 

variables are constrained to either points or sets of points. 
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Proof:  First, note the “dimension reducing” property of regular relations.  

A regular relation applied to k-dimensional space will form an allowability 

set of dimension k-1.  If a second regular relation is applied, the intersection 

of the two allowability sets will have dimension k-2.  In general, if n sets are 

intersected, the resulting dimension will be k-n.  (Refer to Figure 4-5)  Since 

the BNS has by definition a constraint potential of zero, K-N=0 and thus the 

intersection of all the N relations has a dimensionality of zero.  QED. 

 

Figure 4-5. Regular relations have the property that each application of a new relation reduces 

the dimensionality of the total relation by one. 

 “I have no argument with this result,” commented the manager.  

“Theorem 11 merely tells us that if we have n simultaneous equations 

involving n variables, then we should be able to solve for all these variables.  

In fact, I observe that the BNS can even be a 1x1 square: one equation and 

one unknown, which I also expect to always be able to solve.” 

“Yes, I agree that it is intuitively appealing,” responded the analyst, “but 

that intuition is based on the career-long experience of mindlessly 

manipulating algebraic rules.  Theorem 11 “sanctifies” this algebraic rule 

from the broader perspective of multidimensional relation theory.  Perhaps 

what is less intuitive -- and therefore more valuable -- is that the BNS is the 
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“kernel of constraint” in multidimensional math models.  Figure 4-6 shows 

why the nodal square (NS) is not the kernel of constraint.  In some cases the 

‘shell’ between the NS and BNS is merely the resultant constraint domain 

emanating from the BNS’ sources of constraint; in other (more serious) 

cases, part of the NS is overconstrained with overlapping BNSs and the 

remaining part is tree-like and underconstrained.” 

 

Figure 4-6. The Nodal Square (NS) is not the kernel of constraint; only the Basic Nodal 

Square (BNS) is.  In NS-type a, constraint flows from the BNS to fill out the NS.  In NS-type 

b, multiple BNSs overconstrain some of the knots and constraint doesn't even reach the other 

knots. 

“Thinking back to the simple example of Chapter 1, let’s examine the 

general propagation of constraint across a math model,” suggested the 

analyst, referring to Figure 4-7: 



4. Regular Relations  

 

69 

Even before a computational request is made, we must determine if the 

model is consistent.  As we observed earlier, there may be intrinsic sources 

of constraint in the form of BNSs (including 1x1 BNSs) that either point 

constrain the model or, worse yet, overconstrain it if the BNSs overlap 

common variables.  If the BNSs overlap and contribute to overconstraint, 

then the model is not consistent and we can go no further until the 

overconstraint is relieved.  Worse yet, the constraint may propagate into 

resultant constraint domains, possibly overconstraining variables which are 

in two or more of these resultant domains.  Again, if this occurs, the model is 

not consistent; overconstraint must be relieved before we can ask for 

computational requests. 

When checking for computational allowability, the procedure is quite 

similar, except that, in addition to the constraint sources, we now must 

superimpose constraints in the form of independent variables and variables 

held at some selected constant value.  As is shown in Appendix A, the 

application of the rules of Theorems 10 and 11 will generally not yield an 

allowable computational request.  In tree structures, the Theorem 10 rules 

can be applied very rapidly, but they will likely bog down in the vicinity of 

circuit structures where the BNSs are hiding. 

Therefore, for both the determination of model consistency and 

computational allowability, the location of the BNSs become critical; they 

are the “kernels of constraint” around which inconsistency and 

unallowability occur. 

“Well,” observed the manager, “they weren’t hard to find in the example 

of Chapter 1.  And for higher dimensioned models, all I need to do is merely 

examine the subsets of the constraint matrix rows to see where the BNSs are 

hiding.” 

“There’s that word ‘merely’ again,” chided the analyst.  Appendix A 

deals with sizable models of thousands of variables and relations.  However 

let’s look at just a medium size model of say, 100 dimensions.  The number 

of possible submodels -- or subsets of the rows of the constraint matrix, as 

you put it -- is the power set of the set of nodes and is equal to 2
100

.  Even if 

your computer could examine one of these subsets for a possible BNS every 

nanosecond, it would still take about 10
14 

years, or a thousand lifetimes of the 

universe to go through this power set exhaustively.” 

“Attempting to find BNSs by staring at the bipartite graph would be even 

worse,” guessed the manager.  “Hundreds and thousands of vertices would 

appear as a monstrous ‘snake chart.’” 
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Figure 4-7. Even before a computational request is made, intrinsic constraint sources -- 

formed on the BNS kernels -- may exist in consistent models.  These sources flow their 

constraint outwards into resultant constraint domains.  If these domains overlap, 

overconstraint of the variables within the overlap is likely, rendering the overall model 

inconsistent. 

“Absolutely,” agreed the analyst.  “The low dimensional bipartite graphs 

are certainly useful to develop general theories, but they would be hopeless 

to use as a tool for realistically complex models.  Figure 4-8 is an example of 



4. Regular Relations  

 

71 

how messy it can get.  There is an important theorem in set theory by Hall 

[14] which we modify into bipartite graph theory as:  

Theorem 12:  In order that a distinct output variable be associated with 

each of m relations it is sufficient that, for each K=1,2,3..m, any selection of 

of K of the relations shall contain between them at least K relevant variables.  

The computer aided method is the only one feasible and we need the 

constraint matrix for communication with the computer.  However, if we are 

to address realistic dimensions of modern models, we must avoid the trap of 

exhaustively searching for the BNS culprits through power sets with their 

attendant exponential explosions.   

 

Figure 4-8. A bipartite graph so large that gravity forces it into a spherical shape. 

Our strategy will be to understand how the properties of the BNS fits 

within the easily computed properties of the bipartite graph.  If we are alert 
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and understand what we’re doing, we can improve the computation time to 

find the BNS foxes in the dense forests of the bipartite graph by factors of 

trillions.  But first, in Section 4.3 we must summarize some properties of the 

bipartite graph, before we develop practical rules to locate the BNSs in 

section 4.4. 

4.3 USEFUL PROPERTIES OF BIPARTITE 

GRAPHS 

The most obvious properties of any graph are its connectedness, its tree-

ness and its circuit-ness.  Each of these has important consistency and 

computability consequences and we will treat them in this order. 

In order to focus on the structure of graphs, let us repeat these three 

important definitions from Chapter 3: 

Definition 15:  A component of a graph G is a maximal connected sub-

graph of G. In other words, a connected sub-graph H is a component of G if 

H is not a proper sub-graph of any connected sub-graph of G (Gross & 

Yellen, 2006). 

Definition 16:  A tree is a minimally connected graph that has no 

circuits. And in a tree, there is exactly one path connecting every pair of 

vertices. 

Definition 17:  A circuit cluster is that structure within a connected 

graph such that there are two or more independent paths connecting every 

pair of vertices. Independent paths have no vertices in common except their 

end points. 

Examples of definitions 15, 16 and 17 are provided in Figure 3-5.  Let us 

first address an automatic algorithm to determine the connected components 

of a graph. 

Definition 26:  A node and knot are adjacent  when there is an edge 

connecting them.  A vertex is a separating vertex if its removal disconnects 

the graph. 

From the viewpoint of the constraint matrix, the existence of a relevant 

element in the xth row and yth column denotes the existence of the xy edge 

and thus the adjacency of the x node and y knot. 

Definition 27:  The connectedness algorithm, by repeatedly applying the 

adjacency definition, will partition any graph into disjoint connected 

components. 

Definition 28:  The separating vertex algorithm, by employing trial 

eliminations of vertices and determining whether the remaining graph is still 

connected, will locate the graph’s separating vertices. 

These algorithms are exhaustive and will always work to determine the 

connected components and separating vertices of any graph, including 
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bipartite graphs.  However, it may sometimes be useful to employ more 

global results which are a function of only the total number of vertices and 

edges and provide faster conclusions on some occasions.  These results, 

showing when the graph must be connected, may be connected, and cannot 

be connected are presented in Figure 4-9. 

 

Figure 4-9. Domains of connectedness for bipartite graphs as a function of the number of 

edges, E, and the number of vertices, V.  (Recall that V=K+N.) 

Theorem 13:  A connected graph which has V-E=1 is a tree.  A tree is a 

minimally connected component and every vertex of a tree is a separating 

vertex. 

Proof:  Consider the simplest possible case for a tree: two vertices 

connected by one edge; thus V=2 and E=1, yielding V-E=1.  Now add more 

fragments which are connected but do not contribute more paths between 
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vertex pairs. In all cases, these fragments will add one more vertex and one 

more edge; thus V-E=1 is still true no matter how many more fragments are 

added.  QED1. 

Since a tree provides only a single path between any vertex pair, 

removing any vertex will interrupt that path and disconnect the tree into 

separate components.  QED2. 

Theorem 13 provides us with a simple and powerful tool for the analysis 

of trees within graphs, no matter how highly dimensional and complex they 

become.  Figure 4-10 presents examples of how it can be applied. 

 

Figure 4-10. Theorem 13 is unerring in its ability to identify trees.  Initial layouts of bipartite 

graphs may frequently disguise the fundamental "tree-ness" of the structure, especially when 

the dimension is large. 
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Definition 29:  The tree algorithm for graph G with V vertices and E 

edges: If V-E=1, then G is a tree; if V-E>1, then G is disconnected, if V-

E<1, then G has at least one circuit. 

A companion algorithm which is even simpler and in many cases can 

locate the very ends -- or “twigs”-- of the trees easily, is: 

 

Definition 30:  The tree-twig pruning algorithm: search the entire 

constraint matrix for vertices of degree one -- solitary elements in a row or 

column -- and remove the row (which is the node or relation).  Repeat until 

no vertices of degree one remain.  The residue will be a graph completely 

comprised of circuits, which may be connected by “internal trees” (without 

twigs). 

Finally, let us consider the most complex case of circuits within graphs: 

 

Definition 31:  The circuit rank, c(G), of a graph, G, with V vertices, E 

edges and P connected components is:  c(G)=E-V+P. 

 

Definition 32:  A simple circuit, Cj is a directed sequence of connected 

edges that does not use any vertex or edge twice.  A circuit vector for circuit 

Cj is a sequence of elements, {e1,e2,e3...} where: 

 

 +1, if Cj traverses edge i in positive sense 

 ei =   -1, if Cj traverses edge i in negative sense 

  0, if Cj does not traverse edge i 

 

For the purpose of determining the ei, the edges of G are arbitrarily 

assigned directions. 

 

Definition 33:  Circuit Vector Addition and Independence have exactly 

the same meaning as vector addition and independence in linear algebra. 

Refer to Appendix D for a brief summary of the relevant portions of 

linear algebra which we will use for graph theory analysis.  This relationship 

between vector spaces and graph theory can be viewed as another example 

of the unity and even beauty of mathematics.  Its utility is demonstrated by 

the following simple and powerful theorem: 

 

Theorem 14:  The number of simple, independent circuits of a graph G, 

equals c(G), its circuit rank. 

Proof:  See Reference [2]. 

This theorem is truly amazing, providing us with very useful information 

about the complexity of circuit clusters, requiring only a knowledge of the 

number of the graph’s vertices and edges -- these are merely the 



 Constraint theory 

 

76 

semiperimeter and the number of non-trivial elements of the constraint 

matrix.  The theorem essentially tells us the dimensionality of the circuit 

vector space.  In linear algebra by comparison, there is no comparable 

method to compute the dimensionality of the vector basis of a space of many 

vectors. 

A dramatic example of Theorem 14’s application is shown in Figure 4-

11. 

A relatively simple circuit cluster has 13 simple circuits, but only 4 of 

them are independent circuits in the sense of Definition 30.  This is 

analogous to a circumstance where 13 vectors are defined but they can be 

captured within a 4-dimensional vector space.  In graph theory we can 

compute the 4 dimensions by a trivial computation of the observable 

variables V and E; but in linear algebra, the computation is far more arduous 

and becomes rapidly worse with higher dimensions.  Figure 4-10a provides 

examples of circuit rank, c(G), as well as constraint potential, p(G). 
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Figure 4-10a. Both the circuit rank and the constraint potential of a bipartite graph will be 

useful to locate the kernels of constraint in a complex model. 
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Figure 4-11. A bipartite graph with 13 simple circuits.  However, a simple computation of the 

circuit rank, c(G)=E-V+1 reveals that there are only four independent circuits. 

Definition 34:  The circuit rank of G algorithm: compute the number of 

independent circuits of G by:  c(G)=E-V+P. 
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Definition 35:  A taxonomy of graph structures.  The taxonomy listed 

below classifies all possible graphs by defining these five properties in 

sequence: a) number of paths between vertices, b) number of independent 

paths, c) existence of trees, d) whether the trees are internal or external, and 

e) whether the trees connect to other trees or to circuit clusters. 

 

1.  Zero paths connecting vertex pairs:    disconnected components 

2. One path connecting vertex pairs:   isolated trees 

3. Many paths connecting vertex pairs:   circuit/tree structures 

3.1.  All paths are independent:     circuit cluster 

3.2  Not all paths are independent:    circuit/tree networks 

3.2.1  Circuit clusters w/o trees:    “kissing” circuit clusters 

3.2.2  Circuit clusters with trees:   

3.2.2.1  Trees are external:     circuit clusters with “twigs” 

3.2.2.2  Trees are internal:     “doily” structures 

3.2.2.2.1  Trees-trees 

3.2.2.2.2 Trees- circuit clusters 

 

These definitions are summarized in Figure 4-12, along with a Venn 

Diagram demonstrating the nested nature of the sequential categories. 

 

Theorem 15:  In the taxonomy of Definition 35, the following categories 

are mutually exclusive and exhaustive:  1, 2, 3.1, 3.2.1, 3.2.2.1, 3.2.2.2.1 and 

3.2.2.2.2. 

Proof:  Examination of the nested category specifications -- with the aid 

perhaps of Figure 4-12 -- demonstrates that the specifications are mutually 

exclusive and exhaustive at every level of classification.  Specifically, 

3.2.2.2.1 and 3.2.2.2.2 make up 3.2.2.2, which together with 3.2.2.1 make up 

3.2.2, which together with 3.2.1 make up 3.2, which together with 3.1 make 

up 3, which together with 1 and 2 make up all possibilities.  QED. 

In the next section, we apply the above properties of graphs in order to 

locate the BNS kernels of constraint in a far more efficient manner than the 

brute force approach mentioned above. 

4.4 CORNERING THE CULPRIT KERNELS;  TEN 

EASY PIECES 

Now that we’re somewhat familiar with some aspects of “the math house 

of graphs” we can extend the previous section’s results on general graph 

theory to bipartite graphs and corner the BNSs which may be lurking deep 

within the tangled web of models like Figure 4-8. 
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Figure 4-12. Classification chart and Venn diagram for the structures of a bipartite graph.  

Categories 1, 2, 3.1, 3.2.1, 3.2.2.1, 3.2.2.2.1 and 3.2.2.2.2 are mutually exclusive and 

exhaustive. 

First of all, let us treat the trivial case of trees which terminate with nodes 

of degree = 1.  These are really 1x1 BNSs and do not support the spirit of 

building multidimensional models.  In every case, they represent a relation 

with a single variable (because the nodal degree = 1) and this variable can be 

solved for prior to its incorporation into the total multidimensional model.  
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In other words, these “nodal twigs” are single dimensional models and serve 

only to clutter the total model.  They can be easily identified since they are 

the rows of the constraint matrix which contain only one element.  Once that 

single relevant variable has been determined, its value can be “absorbed” 

into all its other relevant nodes as a constant, thus eliminated from the 

constraint matrix and bipartite graph. 

Next, we will prove a simple theorem about integers which will help 

speed many of the proofs in this section: 

Theorem 16:  Let p1, p2, p3.... pi  be a set of integers.  If   
n

i np
1

 then 

there exists at least one pi  such that pi>-1. 

Proof:  Consider the trivial case of n=1: obviously if p1>-1, then p1>-1.  

Next, consider n=2, then as can be seen in the 

diagram on the right, if p1+p2>-2, then either 

p1>-1, or p2>-1.  Assume that the theorem is 

true for n=1, and we add a (n+1)th term equal 

to -1 (the most stress-full case) to both sides: 

thus we obtain: p1+p2+... pn -1> -n-1, which is 

identical to  
n

i np
1

.  Thus we have 

shown that the theorem is true for n=1 and 

n=2, and furthermore, if it is true for n, then it 

is also true for n+1.  QED. 

“I believe that this theorem is the least interesting one I have ever 

seen,”sulked the manager. 

“I would tend to agree with you,” said the analyst.  “That’s why I 

frequently refer to it as the ‘trivial’ theorem and it’s not counted among the 

‘Ten Easy Pieces.’  However, as you will soon see, it helps prove other 

theorems more compactly which will enable us to find BNSs trillions of 

times faster than the method you suggested earlier  (the ‘merely’ method). 

“Trillions?!” mumbled the manager under his breath. 

We are now prepared to relate the properties of a general BNS to its 

constraint potential and topological graph structures defined in the previous 

section by way of these ten compact results: 

 

Theorem 17: If p(G) = N – K ≥ 0, G contains at least one BNS. 

Proof: If G has p(G) = 0, its constraint matrix will be a nodal square 

(NS). If G has N – K > 0, its constraint matrix will be a rectangle with more 

rows than columns, in which case there will always be rows (sub-graphs) 

which can be removed to bring p(G) = 0, thus forming a NS. If there is no 
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smaller NS within it, it is a BNS. If there is a smaller NS within it, it is still a 

BNS within G. QED. 

 

Theorem 18:  A BNS cannot have a subgraph, Gs, with p(Gs)>0. 

Proof:  If p(Gs)>0, it must have a BNS within it, and by Definition 25 

cannot be a BNS itself.  QED. 

 

Theorem 19:  Every BNS must be connected; i.e., 

it cannot straddle two components. 

Proof:  Assume G is a BNS which is not 

connected and has two subgraphs G1 and G2.  Since 

p(G)=0, then p(G1)+p(G2)=0.  But then, by Theorem 

16, either p(G1)>0, or p(G2)>0.  By Theorem 17, G has a BNS within it, 

contradicting the assumption. QED. 

 

Theorem 20:  No BNS can be a tree. 

Proof:  Recalling that terminal nodes are not allowed, 

the simplest tree is a node between two knots.  Adding 

more tree fragments  with N-K<0 will either keep p(G)=-

1 or further decrease p(G).  Thus p(any tree)<0 and it 

can’t be a BNS.  QED. 

 

Theorem 21:  No BNS can have a subgraph which is 

a tree. 

Proof:  Assume that G is a BNS comprised of a tree 

subgraph, Gt, and another subgraph, G2, joined at a 

knot.  By this assumption, p(G)=0, and from theorem 

20, p(Gt)<0.  Since Gt and G2 share a knot, 

p(G)=p(Gt)+p(G2)+1=0, resulting in p(G2)>-1.  By 

Theorem 18, G2 must have a BNS within in it resulting 

in the conclusion that G cannot be a BNS since there is 

a smaller BNS within it.  The proof is similar if the 

subgraphs are connected by a node.  QED. 

 

Theorem 22:  No BNS can lie across circuit clusters with a separating 

vertex. 

Proof:  Assume G is a BNS which lies across circuit 

clusters G1and G2 with either a node or a knot as a 

separating vertex.  If the vertex is a knot, then 

p(G1)+p(G2)=-1; if it’s a node, p(G1)+p(G2)=+1.  In either 

case, by Theorem 16, one or the other of the subgraphs 

has constraint potential equal to or greater than zero. 
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Thus, at least one BNS lies within the subgraphs and no BNS can lie across 

both.  QED. 

 

Theorem 23:  No BNS can lie across a tree-like network of circuit 

clusters linked by trees which are attached to trees. 

Proof:  Assume G is a BNS which lies across 

a chain of circuit clusters linked by trees.  Let G1 

and G3 be the circuit clusters and G2 be the tree.  

Since the total constraint potential equals zero, 

and the constraint potential of the tree subgraph 

is negative, by Theorem 16, the constraint 

potential must be equal or greater than zero in at 

least one of the circuit clusters.  Thus, a BNS 

must lie in a sub-graph, and the total graph 

cannot be a BNS. QED. 

 

Theorem 24:  No BNS can lie across a tree-like network of circuit 

clusters which are linked by trees to other circuit clusters. 
Proof:  Since, by definition, the trees linking the circuit clusters together 

are internal trees, they can have no external twigs and the constraint potential 

of each tree equals +1, at most.  A “meta-tree” can be formed by letting the 

circuit clusters be vertices and the connecting trees become edges.  By 

Theorem 13, V-E=1 for a tree, thus in the metatree, the number of circuit 

clusters minus the number of connecting trees equals 1.  As before, let us 

assume that the network is a BNS, so:  
n

i npGp
1

)1(0)( .  This 

yields nnpi

n

 1 .  Thus, by Theorem 16, at least one of the pi>-

1 and thus there must be a BNS within one of the circuit clusters.  QED. 

 

Theorem 25:  Every BNS is the union of adjacent circuits within a circuit 

cluster.  (The “inside out” BNS location theorem.) 

Proof:  Recall the taxonomy of Definition 35 and Theorem 15 which 

listed an exhaustive and mutually exclusive set of graph structures.  BNSs 

cannot lie across connected components, can’t be a tree or have tree 

appendages, or be linked by trees, and can’t be within circuit clusters linked 

by separating vertices.  The only remaining structure is the union of circuits 

within a single circuit cluster.  QED. 

Refer to Figure 4-13 for examples of BNSs in graph structures.  Note 

that, although every BNS must lie across adjacent circuits, not every circuit 

or union of circuits necessarily contains a BNS.  This is another example of 
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the non-symmetry of certain theorems which are not “if and only if” 

theorems.  This misunderstanding has been the largest cause of confusion 

among students. 

 

Figure 4-13. Example of Theorem 25, the "inside out" theorem.  All BNSs are the union of 

adjacent circuits and lie completely within a circuit cluster. 

Definition 36:  A set of BNSs is independent if no single BNS is a linear 

function of any combination of the other BNSs.  (See Figure 4-14 for 

examples.) 

 

Theorem 26: Every circuit cluster (cc) with a constraint potential of 

p(cc)>0 contains at least p(cc)+1 independent BNSs.  (Proof provided later.)  

Refer to Figure 4-14 for an example of BNSs in cc’s. 

“Are you done with machine-gunning theorems at me?” complained the 

manager.  “I told you before that even in my most scholarly days, I tended to 

skip over the proofs of theorems.  Here, you haven’t avoided any proofs and 

you’re even lapsing into using acronyms more frequently.  That may speed 

the exposition, but it also impedes the understanding somewhat.” 
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“Sorry,” apologized the analyst, “but I’m really trying to communicate 

the compactness and rigor of this little corner of mathematics.  This 

hopefully provides a foundation for the rules of the next section.  If this were 

a more typical book on mathematics, the ten theorems would have been 

aggregated into two or three at the most and the rest demoted to lemmas in 

longer proofs that would have been far more difficult to follow.  Regarding 

acronyms, it is really worth your effort to learn and master them; it’s like 

using language at a higher level of abstraction.  So from now on, we’ll use 

the shorthand ‘T12’ for ‘Theorem 12’ and ‘D9’ for ‘Definition 9’, etc.”  

Table 4-1 provides an overview of the ten theorems, using this notation. 
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Figure 4-14. Examples of Definition 36.  Sets of independent BNSs can have no members 

which are linear combinations2 of other members. 

 
2 From the standpoint of their linear algebra representations. 
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Table 4-1. Ten Easy Pieces Summary; Cornering the BNS within the Bipartite Graph 
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4.5 CONTINUING THE PURSUIT INSIDE THE 

CIRCUIT CLUSTERS (cc) 

The analyst continued:  “Now that we have cornered the culprit BNSs to 

be inside circuit clusters, we must resort to both topological and constraint 

properties of the bipartite graph to locate them precisely.” 

“I presume that the constraint potential will be much more valuable 

here,” the manager ventured. 

“True,” agreed the analyst, “but not nearly as valuable as we would like.  

For example, one would hope that if p(cc)<0, we could be assured that there 

are no BNSs within that cc, and if p(cc)=0, then there are exactly p(cc)+1 

BNSs within that cc.  Unfortunately, we cannot reach either of these two 

conclusions.  Referring to Figure 4-15a, we see that a cc with p(cc)<0 can 

still have BNSs and a cc with p(cc)>0 can have any number of BNSs equal 

or greater than p(cc)+1.  Look at the outer ring of the cc; because its a 

bipartite graph, p(outer ring)=0.  We can form Y inner loops, each of which 

increases p(cc) by 1, while at the same time we can form Z other inner loops 

each of which decreases p(cc) by 1.  Thus, Y additional BNSs are formed 

but the p(cc) = Y-Z.  Rearranging, we see that Y=p(cc)+Z and that the 

number of BNSs=Y+1=p(cc)+Z+1.  Since Z=0, we conclude: the number of 

BNSs=p(cc)+1.  (This is the proof of T26 promised above.)” 

“No more use than that?” complained the manager. 

“Well, we can squeeze out a little more:  From the viewpoint of the 

constraint matrix, if a cc has p(cc)>0 then it has N-K more rows than 

columns and thus N!/(N-K)!K! nodal squares can be found within this 

rectangle (Figure 4.15b).  That’s a help, but beware; just because every NS 

must contain at least one BNS does not allow us to conclude that there are at 

least N!/(N-K)!K! BNSs in the cc.  In Fig 4.15c, we see that a single BNS 

may be common to two or more NSs, and in Fig 4.15d, we see there can be 

more than one BNS in an NS.” 

“So we must also resort to the topology of the cc.  From T25, we know 

that every BNS lies across the union of circuits and from T14, we know that 

the number of independent circuits in a cc is its circuit rank, c(cc).  This 

allows us to establish the maximum number of BNSs in a cc as the power set 

of the cc’s circuit rank: 

Theorem 27   The maximum number of BNSs in a cc equals the power 

set of the circuit rank of the cc:  Max # of BNSs = 2
c(cc) 

“Thus, T26 sets the lower limit on the number of BNSs as a function of 

the cc’s constraint potential and T27 sets the upper limit as a function of the 

cc’s circuit rank,” the analyst concluded. 
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Figure 4-15a. Demonstration of T26: the number of BNSs in a circuit cluster is equal or 

greater than p(cc)+1. 

“So what do you suggest a practical guy to do?” queried the manager. 

“Constraint theory provides at least two complementary robust 

procedures for locating the BNSs within the cc’s: 

 

a) The brute force procedure which merely examines every submodel 

within the cc and checks for p(submodel)=0, the definition of a 

BNS. 

b) The T25 procedure employing the fact that every BNS must be the 

union of adjacent circuits. 
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Figure 4-15 b-d. In a circuit cluster with p(cc)>0, it is easy to determine the number of nodal 

squares within it, but this does not lead directly to the number of basic nodal squares. 

The brute force procedure develops the power set of the N relations -- 

each one being a submodel -- and tests for p(submodel)=0 and that there are 

no submodels with p(submodel)=0 within it.  There will be 2
N 

such 

submodels to test and the testing of each one is simple in the extreme.  True, 

we seem to be trapped again in an exponential number of trials but in general 

the number of nodes in even the largest of circuit clusters will be far smaller 
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than the number of nodes in the total model.  For example, if the total model 

had 100 relations, it would be very unusual to have a circuit cluster as large 

as 30 relations.  The computational advantage of performing brute force 

testing within a cc rather than within the total model equals 2
100

/2
30 

~ 10
21

 -- 

truly enormous!  Assuming that each test can be accomplished in a 

nanosecond, the brute force examination of each of the cc’s submodels 

would require only a second. 

The T25 procedure offers greater efficiency as the number of relations 

within the cc grows much larger than 30.  By definition, it makes use of the 

fact that every BNS is the union of adjacent circuits.  The first step in this 

procedure is to develop the set of independent circuits within the cc, which 

by T14 is equal to the cc’s circuit rank, c(cc).  Then examine the submodels 

which reside on these circuits -- including the twig knots which may be 

attached -- one at time, then two at a time with adjacent circuits, then three at 

a time with adjacent circuits, etc..  The disadvantage of this procedure is that 

we must find the independent set of circuits and form the potential sets of 

combinations of these circuits, before we test for zero constraint potential of 

any of the submodels.  The advantage of this procedure is that, instead of 

searching through the power set of the N relations of the cc, we are searching 

through the power set of the cc’s independent circuits.  Assuming again that 

N=30 and that c(cc)=6  (an average of 5 relations per circuit), then the 

computational leverage is about 2
30

/2
6
, a factor of several million.  Of course 

this must be weighed against the additional “overhead” of forming the 

independent set of circuits and its power set. 

Generally speaking, it is judged the brute force procedure would be more 

practical for cc’s with N<30 if it could be accomplished on the order of a 

second.  As N grows to 50 and beyond for the cc, it would become 

increasingly attractive to employ the T25 procedure.  (Refer to Fig 4.16). 

4.6 LOCATING BNSs WITHIN A MODEL GRAPH 

Let us now apply the definitions and theorems of the previous sections to 

the challenge of finding BNSs within a model graph.  

 

Definition 37:  General procedure for locating BNSs in a model graph, 

which involves the sequential application of these “sieves”: connected 

components, tree structures, circuits, circuit clusters and constraint potential. 

 

This procedure is outlined in the following steps a) – h) and illustrated 

graphically, with a notional model graph, in Figures 4-16 through 4-21.  
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Step a) trims down the model by eliminating all nodes of degree one. These 

twig nodes represent single-variable equations which can be solved 

separately by employing the full model. Without this key topological 

property, the cornerstone theorems (“ten easy pieces”) of constraint theory 

could not have been proven. As a subset of the “ten easy pieces”, T-21 

through T-25 are specifically employed in the D-37 process. As such, no 

terminal nodes are allowed before the rules of constraint theory can be 

applied. Not only are the terminal nodes trimmed from the model graph but 

their incident edges, which would become “dangling”, must also be cleaned 

up explicitly. 

Once the relevant single variables (knots) of the above terminal nodes have 

been determined, analytically or numerically, their values can be 

incorporated into other relevant relations as coefficients. In effect, these are 

1 × 1 BNS which only serve to clutter a multi-dimensional model and can be 

temporarily eliminated. The solution time for this process is linear as each 

and every node will be examined once, and only once, for checking of d(n) = 

1 and removal as such. It should be clarified that the terminal nodes are only 

temporarily eliminated, or hidden, for the purpose of topological 

simplification while we are searching for other higher-order BNS in the 

subsequent steps of D-37. Afterwards, these terminal nodes will still need be 

re-integrated back into the original, complete model to check for possible 

over-constraint among all BNS (Phan, pp. 101-104). 
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Step b) decomposes the total graph into connected components by 

employing graph theoretic concepts of spanning tree and full-spanning forest 

to improve solution time over that of D-27. In particular, to identify each 

component in a model graph, the widely-accepted depth-first search (DFS) 

algorithm is used to grow a spanning tree. This algorithm was originally 

devised by Tarjan (1974), and has been extensively referenced by Cormen et 

al. (2001), Dechter (2003), Gross & Yellen (2006) and many others in the 

literature. The DFS also lends itself naturally as an effective and efficient 

application in steps (d) and (e) of D-37 and thus can even save more solution 

time (Phan, pp. 104-114).  

 
Figure 4-16. DFS algorithm used to decompose the BPG into two connected components. 
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Step c) discards those components without any circuit as identified in Step 

(b) since, per T-25, purely tree-like structures cannot contain any BNS. D-31 

stipulates computation of the circuit rank, c(G), for every component and 

discard those with c(G) = 0. However, the inherent products coming out of 

Step (b) include only those components with c(G) > 0. Thus, repeated 

calculation of c(G) is not necessary (Phan, pp. 114-115). 

 
 

Figure 4-17. Retain only the lower connected component with c(G) > 0. 
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Step d) uses D-30 to trim repeatedly each spanning tree of every external 

twigs, i.e. vertex with dC(v) = 1, since no BNS can exist in tree twigs by 

T21. The symbol dC(v) is meant to emphasize the degree of a vertex within 

the context of its parent component coming out of Step (c), and not that of 

the spanning tree which is just a subgraph of the component. Even though 

this step only operates on spanning trees, it is important to keep in mind that 

the relative complement of each spanning tree must always be carried and 

fully accounted for, as an imperative part of every component, to be 

simplified and decomposed through every sequentially-related step within 

the D-37 process (Phan, pp. 115-117). 

 

 

 

Figure 4-18. D-30 used to trim external trees from a connected component with c(G) > 0. 
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Step e) can employ one of several methods to identify and remove all 

internal trees from every spanning tree of each component coming out of 

Step (d) since no BNS can exist within internal trees by T23 and T24. A 

spanning tree will be decomposed into smaller spanning trees, corresponding 

to newly-formed respective sub-components. The relative complement of 

each resultant smaller spanning tree will also be automatically identified as 

by-products. In an edge-centric method, a spanning tree needs to be grown 

only once for a component to save solution time (Phan, pp. 117-122). Other 

methods to determine internal trees include those by Tarjan, Cormen et al. 

(pp.558-559) and Gross & Yellen (pp. 182-184). 

 

 

 

Figure 4-19. All internal trees to be removed from a connected component with c(G) > 0. 
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Step f) identifies separating vertices of every BPG coming out of Step (e) 

and partitions its kissing circuits, or circuit clusters, at such points. D-28 

stipulates a trial-elimination procedure with polynomial runtime of (V·E), 

where V and E are the numbers of vertices and edges, respectively (Shirey, 

1969). However, a more efficient DFS-based algorithm with linear runtime 

can be used to separate kissing circuits and circuit clusters. The notion of a 

separating vertex in Constraint Theory (D-26) is identical to that of a cut-

vertex, cut-point or articulation point in Graph Theory. And the structure of 

a circuit cluster in Constraint Theory is the same as that of a biconnected 

component in Graph Theory (Phan, pp. 123-143). For each partitioned 

circuit cluster, if p(cc)>0 then the cc has at least p(cc)+1 BNS within it. 

 

 

Figure 4-20. Kissing circuits and circuit clusters to be separated at articulation points. 
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Step g) can follow one of several methods to search for intrinsic BNS within 

each cc coming out of Step (e). For smaller cc with N ≤ 14, the brute-force 

approach is to examine its nodal power set, which would result in an 

exponential solution-time of 2
N
 (Phan, 2011, p. 381).  For larger cc, a more 

efficient method for locating potential BNS is to examine only the fruitful 

unions of overlapping nodes, either directly or transitively, i.e. avoiding 

combinations of non-overlapping nodes. The search for BNS should also be 

systematically implemented in a bottom-up approach, smaller nodal unions 

before larger ones. As such, smaller nodal unions identified as BNS, or BNS 

containers, can be tagged to not be re-used as components in the construction 

of any larger union. Such a larger union can never be a BNS and should not 

be unnecessarily constructed and examined (Phan, pp. 144-231). 

 

 

Figure 4-21. Search for BNS among simple circuits and within circuit clusters. 
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Step h) validates the potential BNSs located by step (g) in simplified circuit 

clusters, which are isolated sub-graphs of the overall original model graph. 

These potential BNS must still be validated, as complete sub-models, within 

the context of a connected component of the model graph identified in step 

(b). The validation process is implemented by re-integration of tree twigs 

pruned in step (d), internal trees removed in step (e) and circuit clusters 

decomposed at separating vertices in step (f) (Phan, pp. 323-325). 

 

“Surely, for those not familiar with D37, there must be other ways of 

managing high dimension models on computers”, insisted the manager. 

“Yes, there are ways,” admitted the analyst.  “But they require far more 

attention by the people developing the model and programming it than one 

would like in this world of highly computer-automated analysis that we like 

to believe we’re in.  A pragmatic approach would be to start with models 

whose constraint potential is enormously negative -- which have perhaps a 

100 or so fewer equations than variables.  Then, once the computational 

request is made known to the model manager, the potential computational 

paths -- which started out under-constrained -- are examined to see where 

variables can be set at constant values so that the constraint potential is 

brought up to zero along the entire path.  This would be very labor intensive 

and fraught with the danger that the programmers would make these 

‘constraint enhancing’ decisions without properly consulting those with the 

responsibility of model fidelity.  I have a very sad story in my past -- among 

many others I’m certain -- wherein a programmer decided to add a key 

constraint to the model without informing management, and as a result my 

company lost a crucial contract we had worked on for years.  Typically, the 

math model results were presented to management with a minimum of 

visibility.” 

“Getting off the war stories for a moment,” said the manager changing 

the subject, “doesn’t step f) of D37 leave us hanging a bit?  It says that if 

p(cc)>1 then the cc has multiple BNSs.  What happens then?” 

 “Thanks for the question,” the analyst said.  “We have spent most of this 

chapter on the issue of the location of BNSs but, as crucial as that is, it is still 

only part of the job of math model management.  It’s time to broaden our 

sights to the whole problem.” 

 

4.7  QUERIES FOR THE REGULAR STUDENT 

1. Consider the following mathematical model of regular relations: 

a = f1(c, d), h = f2(g, m, w), d = f3(r, g), c = f4(a), d = f5(c),   

t = f6(r, s) 
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Is the model connected? 

Is it tree-like, circuit-like or both? 

What is the circuit rank of the model? 

What is the constraint potential of the model? 

Are there BNS’s in the model?  If so, identify it (or them). 

 

2. Consider the following mathematical model of regular relations: 

x = f1(y), z = f2(w, y), y = f3(x),  x = f4(y) 

What is the circuit rank of the model? 

What is the model’s constraint potential? 

Are there circuit cluster(s) in the model?  If so, identify it (or them). 

Are there BNS’s in the model?  If so, identify it (or them). 

 

3. Consider the following math model of regular relations: 

m = f1(r, p), n = f2(q, r), r = f3(m, n), q = f4(p, r) 

Is there a circuit cluster in this model?  If so, identify it. 

What is the model’s circuit rank? 

What is the total number of simple circuits in the model? 

What is the number of independent circuits? 

What is the model’s constraint potential? 

 

4. Provide a shorter proof than that given in the text for Theorem 21, 

using only the constraint matrix. 

 

5. If “sc” refers to a simple circuit, prove that p(sc) = 0.  If “nsc” refers 

to a non-simple circuit, show examples how p(nsc) > 0 and p(nsc) < 

0. 

 

6. Prove that, in a circuit cluster, the number of independent circuits is 

equal to or greater than the number of BNSs. 

 

7. Draw the bipartite graph of a circuit cluster which is a nodal square 

that contains two BNSs within it. 

 

8. Draw the bipartite graph of two overlapping nodal squares which 

share a single BNS within them. 

 

9. There is an easy way to count independent circuits much of the time:  

merely locate all the “white areas” inside the bipartite graph which 

are completely surrounded by edges.  Why will this method not 

work in general? 



  

 

 

Chapter 5  MODEL CONSISTENCY AND 

COMPUTATIONAL ALLOWABILITY 

 
 

 

 

5.1 ZERO CONSTRAINT ALL ALONG THE 

COMPUTATIONAL PATH 

Now that we have developed a general process to locate intrinsic BNSs, 

we can return to the concepts expressed in Figure 4-7 and discuss the general 

issue of constraint propagation through a connected graph of regular 

relations.  The general rule, as depicted in Figure 5-1, is compactly stated as: 

In order for a computational request on a consistent model to be 

allowable, the entire computational path, from independent variables and 

constants to dependent variable, must have a resultant constraint potential 

of zero. 

If the resultant constraint potential exceeds zero at any point, the 

computation is over-constrained; if the resultant constraint potential is less 

than zero at any point it is under-constrained.  It is possible for the same 

computational request to be both over- and under-constrained -- at different 

places along the computational path.  In short, the resultant constraint 

potential must be just right along the entire path.  Thus, the designation: The 

Goldilocks rule. 

Referring to Figure 5-1, examine the nodes first.  Recall that the local 

degree of any node, d(N) is simply the the number of edges that intersect that 

node.  The intrinsic constraint potential of that node pi(N) is by definition N 

K =  1 d(N).  Now if constraint flows into this node from elsewhere in 

the model, pi(N) will be increased by I(N), the number of edges which 

propagate constraint into the node.  The resultant constraint potential then 

becomes: 
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pr(N) = pi(N) + I(N) = [1 d(N)] + I(N) 

 

Let I(N) = d(N) 1; we see that this drives pr(N) to zero, and we have 

just derived the “(d  1) in / 1 out” rule for nodes. 
 

 

Figure 5-1. The Goldilocks rules for constraint flow through a network.  In order for a 

computational request to be allowable, the resultant constraint must equal zero at every vertex 

and circuit along the computational paths from independent variables and variables held 

constant to the dependent variable. 
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Next, examine the knots of Figure 5-1.  The intrinsic constraint potential 

of a knot is by definition: Pi(K) = N  K = d(K)  1.  If this knot produces 

O(K) outputs, then the resultant constraint potential of the knot is decreased 

by O(K): pr(K) = pi(K) – O(K).  Recognizing that O(K) + I(K) = d(K), we 

see that setting O(K) = d(K)  1 will drive pr(K) to zero.  Thus we have just 

derived the “1 in / (d  1) out” rule for knots. 

Finally, examine the circuits on the Figure 5-1 computational paths.  As 

we have seen above, if p(circuits) > 0, we will have multiple BNS and 

therefore over-constraint on their common variables.  On the other hand, if 

p(circuits) < 0, then we will experience under-constraint.  If p(circuits) = 0, 

then a single BNS will provide constraint at all its variables, permitting the 

flow of constraint though these circuits. 

In summary, the “Goldilocks” rule stating the necessity of zero constraint 

all along the computational path is a unifying concept for computational 

allowability. 

5.2 RECAPITULATION OF COMPUTATIONAL 

FLOW 

Let us attempt a recapitulation of what is involved in a computational 

request at this point. 

The first order of business is to determine the model’s consistency, for if 

it is inconsistent then no computational request will be allowable.  All 

disconnected components and tree structures of universal relations are 

intrinsically consistent.  However, in circuit-like bipartite graphs there may 

exist one or more BNSs which will exert intrinsic constraint on all of their 

relevant knots.  A single BNS merely restricts the number of computational 

requests, but multiple BNSs often drive the model into inconsistency and 

thus prevents all computational requests.  These over-constraints must be 

relieved before any computational requests can be entertained.  Furthermore 

the constraint flowing out of each BNS may intersect in a larger constraint 

flow domain, and will also require relief by the model builders. 

Once the model’s consistency has been established, computational 

requests on it may be examined.  The general format of these requests will 

be: “Please compute the dependent variable X as a function of the set of 

independent variables {Y}, with the set of {Z} variables held at the constant 

values {Zo}.” 

As part of the consistency check, the bipartite graph already has its 

domains of intrinsic constraint mapped out.  For each computational request, 

add the extrinsic constraint sources due to the independent variables {Y} and 

the variables held constant {Z}.  The effect of applying extrinsic constraint 

to the variables held constant {Z} will be to cause them to disappear from 
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the graph completely (the {Zo} constants will be “absorbed” into their 

relevant nodes as parameters in their equations rather than variables).  This 

action will tend to simplify the model and sometimes even disconnect it, 

making computations across disconnected components impossible.  See 

Figure 5-2. 

 

Figure 5-2. Applying extrinsic constraint by holding some variables constant tends to simplify 

the bipartite graph.  Sometimes the graph is disconnected into separate components, rendering 

computational requests involving variables in different components unallowable. 
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Next, start the flow of extrinsic constraint from each of the {Y} 

independent variables into the remainder of the bipartite graph.  Several 

circumstances may occur, as is shown in Figure 5-3. 

 

a) In the vicinity of tree structures, the (d  1) in / 1 out rule for 

nodes and the 1 in / (d  1) out rule for knots will always be 

sufficient to determine over or under constraint. 

b) Even in the vicinity of some circuits, these rules will still be 

sufficient. 

c) On many occasions, the constraint will flow into a circuit 

structure and appear to stop.  But closer examination shows that 

the constraint flow into a node effectively increases the resultant 

constraint potential of the circuits, forming them into a resultant 

BNS, which by applying constraint to all its relevant knots, 

permits the constraint flow to continue. 

d) Sometimes, the intrinsic and resultant BNSs reside in close 

proximity. 

 

See Fig 5-4 for examples of interactions in these cases. 

5.3 GENERAL PROCEDURE FOR DETERMINING 

CONSISTENCY AND ALLOWABILITY IN A 

MODEL OF REGULAR RELATIONS   

“Recall that in Chapter 1, the existence of a single BNS was an irritant; 

you were disappointed that you couldn’t accomplish all the computational 

requests you desired, but it didn’t drive the model into inconsistency,” the 

analyst continued.  However, the existence of overlapping BNSs will cause 

the model to be intrinsically inconsistent; therefore no computations at all 

are allowed.  That is not just irritating, it’s devastating.  Multiple, 

overlapping BNSs are against nature.” 

“My, my; in addition to being a dealer in hyperbole,” commented the 

manager, “you’re waxing philosophical, too.  What exactly do you mean by 

‘against nature’?” 

“I mean at least two related things,” responded the analyst, “which can be 

captured in the following postulate:” 

Postulate 2:  First, the laws of physics and other descriptions of the 

world are fundamentally consistent if they are fully understood, and second, 

it is the intent of model builders to represent phenomena accurately and thus 

if over-constraint occurs, it is unintentional. 
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Figure 5-3. Flow of constraint in the vicinity of trees and circuits. 

“So, I was referring to the nature of the world as well as the nature of 

model builders.  Since the natural world itself is fundamentally consistent, 

over-constraint is invariably contributed by the fragmented understanding of 

the human model builders, either by inadvertently applying excessive 

relations to the description of a phenomenon or, more frequently, adding too 
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many relations of policy, design rules, optimization criteria or desired 

outcome.” 

 

Figure 5-4. Examples of constraint flow in the vicinity of BNSs. 

In order to bring a circuit cluster with p(cc) to consistency, at least p(cc) 

nodes must be removed.  In other words, of the N nodes in the cc, N  K of 

them must be removed.  From simple combination and permutation theory, 

we conclude that there are N!/(NK)!K! ways to remove N  -K nodes from 

the original N nodes.  Unfortunately, these removals lie outside the domain 

of Constraint Theory and require the group of human model builders who 

contributed to the circuit cluster.  Negotiations of the type discussed in 

Chapter 1 will be required and the discussions could get tense.  Better that 

than having no working model at all!   
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We are now prepared to describe the procedure of determining 

consistency and computational allowability in a bipartite graph of regular 

relations: 

 

Definition 38:  General procedure for regular relations. 

 

a) Locate the BNS by employing D-37. If no BNS found, including 1 × 

1 BNS (a twig node and its relevant knot) and c(G) = 0, the model is 

inherently consistent. Skip steps (b) – (f), go to step (g). 

b) If overlapping BNSs are found, eliminate nodes through negotiation 

so that all remaining BNSs are non-overlapping. 

c) Propagate constraint emanating from the BNSs to their resultant 

constraint domains, employing T10: for nodes, d(n)-1 in and 1 out, 

and for knots, 1 in and d(k)-1 out. 

d) If any two of these resultant constraint domains overlap, determine 

whether any knots are over-constrained.  If so, by negotiation, 

remove sufficient nodes to relieve the over-constraint. 

e) After the resultant domains have expanded as far as T10 applies, 

analyze the remaining graph for resultant BNSs, using D36.  If new 

BNSs arise, continue with T10 and then apply D36 again.  Continue 

until the constraint domains no longer increase. 

f) If all the overlapping BNSs are reconciled and resultant constraint 

domains expand without over-constraint, then the model is 

CONSISTENT. 

g) For each computational request, treat all independent variables and 

variables held constant as extrinsic sources of constraint which are 

added to the intrinsic sources of constraint developed above. 

h) Propagate computational paths from all constraint sources 

throughout the model employing the T-10 rules. If any knot or node 

is over-constrained, the computational request is NOT 

ALLOWABLE. 

i) If the computational path does not reach the dependent variable, then 

examine the residue for BNSs, using D36, and continue with T10, 

followed by D36 as necessary until the computational path can go no 

further. 

j) If the path does not reach the dependent variable, or over-constrains 

a knot or node, the computational request is NOT ALLOWABLE. 

k) If the path reaches the dependent variable by employing all 

independent variables, without either over- or under-constraint along 

the way, then the computational request is ALLOWABLE. It is 

acceptable to have local under-constraint elsewhere in the model. If 
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the dependent variable can be reached without having to propagate 

the constraint externally imposed on one or more independent 

variables, then the computation is UNALLOWABLE. 

 

Steps (a) – (f) address the issue of model consistency, and steps (g) – (k) 

that of computational allowability. The following sections of this chapter 

will examine the above general procedure in more details, step by step, with 

the goal of realizing the utility of Constraint Theory. D-37 and D-38 will be 

further extended, refined and improved into a set of more effective and 

efficient algorithms, ready for implementation. As important as these issues 

are to discuss, they do not represent exponential explosions of computational 

time.  

5.4 DETECTION OF OVERLAPPING BNS 

Step (a) of D-38 states that: “Locate the BNS by employing D-37. If no 

BNS found, including 1 × 1 BNS (a twig node and its relevant knot) and 

c(G) = 0, the model is inherently consistent. Skip steps (b) – (f), go to step 

(g).“  

 

Per T-25, all BNS exist within simple circuits or across clusters of 

adjacent circuits. If a model graph G with circuit rank c(G) = 0, it has no 

circuits within. As such, G contains only tree structures. By T-9, any set of 

universal relations whose BPG has a tree structure is consistent. As a global 

criterion, and a quick check, to distinguish between trees and circuit clusters, 

T-13 asserts that “a connected model graph having V – E = 1 is a tree”. This 

assertion comes directly from the definition of circuit rank (Phan, pp. 31-32). 

 

Otherwise, after all the intrinsic BNS have been identified and validated 

within the context of a connected component in step (h) of D-37, they need 

be compared against one another for any direct over-lapping. To check for 

over-lapping, a set of definitions and vectorial operations will be developed 

and illustrated herein. 

 

Definition 39:  Two BNS are said to directly overlap if they share at least 

one variable in common, i.e. the intersection of their knot sets is non-null. In 

other words, the common variable(s) are said to be over-constrained (or 

over-specified), which causes the parent model graph to be inherently 

inconsistent.  

 

Figure 5-5 illustrates a model graph G and its constraint matrix CG]. 

Within G, three intrinsic BNS can be identified: 
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 BNS #1 consisting of nodes 6 and 7, and their relevant knots e and f.  

 BNS #2 consisting of nodes 1 through 6, and their relevant knots a 

through f.  

 BNS #3 consisting of nodes 1 through 5, and 7, and their relevant 

knots a through f.  

 

Since these intrinsic BNS overlap one another, i.e. sharing and thus over-

constraining at least one common variable, G is inherently inconsistent and 

no computational requests made on G are allowable. 

 

 

Figure 5-5.  Inherently inconsistent model graph with multiple intrinsic BNS 

overlapping one another. 

 

Definition 40:  The characteristic vector (or charvec) of a BNS is the 

union, based on the bitwise inclusive OR operation, of all the charvecs of its 

nodes (see Definition D-9 for charvec, and Definition D-10 for bitwise 

inclusive OR). Symbolically, 

 

  charvec(BNS)  =  
||

1

)(
BNSN

i

incharvec


   (5 – 1) 
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In the constraint matrix CG] of Figure 5-5,  

 

 

Definition 41:  The BNS matrix of a bipartite graph G, denoted G, is 

the rectangular array of binary numbers whose rows correspond to the BNS 

and columns correspond to the knots in G. In G, the entry ei, j = 1 if knot kj 

 KG has been specified by BNSi, and 0 otherwise. 

 

Figure 5-6 presents the BNS matrix G for the example BPG in Figure 5-

5. Note that each row of G represents the characteristic vector of the 

corresponding BNS. 

 

 

 

charvec(BNS1) = charvec(n6) U charvec(n7) = (0, 0, 0, 0, 1, 1 ) 
charvec(n6) = ( 0, 0, 0, 0, 1, 1 ) 

charvec(n7) = (0, 0, 0, 0, 1, 1 ) 

 

charvec(BNS2)  = charvec(n1) U . . .  U charvec(n6)  

                          = ( 1, 1, 1, 1, 1, 1 ) 

charvec(n1) = ( 1, 1, 0, 0, 0, 0 ) 

charvec(n2) = ( 1, 0, 1, 0, 1, 0 ) 

charvec(n3) = ( 0, 0, 1, 1, 0, 0 ) 

charvec(n4) = ( 0, 1, 0, 1, 0, 0 ) 

charvec(n5) = ( 0, 0, 0, 1, 0, 1 ) 

charvec(n6) = ( 0, 0, 0, 0, 1, 1 ) 

 

charvec(BNS3) = charvec(n1) U . . .  U charvec(n5) U charvec(n7) 

                          = ( 1, 1, 1, 1, 1, 1 ) 

charvec(n1) = ( 1, 1, 0, 0, 0, 0 ) 

charvec(n2) = ( 1, 0, 1, 0, 1, 0 ) 

charvec(n3) = ( 0, 0, 1, 1, 0, 0 ) 

charvec(n4) = ( 0, 1, 0, 1, 0, 0 ) 

charvec(n5) = ( 0, 0, 0, 1, 0, 1 ) 

charvec(n7) = ( 0, 0, 0, 0, 1, 1 ) 
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a b c d e f

0 0 0 0 1 1

1 1 1 1 1 1

1 1 1 1 1 1

Knots

BNS1

BNS2

BNS3

 

Figure 5-6.  BNS matrix G of BPG in Figure 5-5. 

 

Definition 42: The overlapping factor between BNSi and BNSj, denoted 

as i, j, is defined as the dot product between their characteristic vectors. 

Symbolically,  

 

 i, j  =  charvec(BNSi) ● charvec(BNSj)     (5 – 2)     

 

Furthermore, by definition of dot product, the overlapping factor i, j also 

indicates the number of common variables (knots) over-constrained by the 

two BNS.  
 
Theorem 28:  BNSi and BNSj are overlapping if i, j ≥ 1. They are not 

overlapping if i, j = 0. 
 
Proof: If two BNS share any common knot in ki then the corresponding 

i
th
 elements in both of their respective characteristic vectors are equal to one. 

Therefore, the dot product between their characteristic vectors must be equal 
to one, or larger, if there are one, or more, common knot between the BNS. 
QED 

 

In Figure 5-6, 1, 2  =  charvec(BNS1) ● charvec(BNS2) =  (0, 0, 0, 0, 1, 1 

) ● (1, 1, 1, 1, 1, 1 ) =  2. Thus, BNS1 and BNS2 overlap by two variables, 

which confirms a visual inspection of Figure 5-5. This technique of 

employing dot product provides a quick check for potential overlapping 

between two BNS. Once any overlapping has been confirmed, the over-

constrained variables can be identified via an element-by-element 

comparison between the BNS charvecs.  

 

Definition 43:  Algorithm to detect overlapping BNS in a model graph 

and to identify variables commonly shared among them. 

Input:  A matrix G with R rows and K columns representing all 

BNS in a graph G. 
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 Output: A subset S   KG consisting of overlapped knots (over-

constrained variables). 

  Initialize S  =  Ø. 

  For i ranging from 1 to (R – 1)  

   For r ranging from (i + 1) to R 

    If i, r ≥ 1 

     For j ranging from 1 to | KG | 

      If the j
th
 element of BNSi = that of BNSr = 1 

       Add the corresponding knot kj to S. 

  Return S (if S  ≠  Ø, the model is inconsistent). 

 

Theorem 29: To detect overlapping BNS and identify over-constrained 

variables using a matrix G with R rows and K columns representing all 

BNS in a model graph G, the required solution time will be: 

 

 detection  =  K (R
2
 – R/2)  ~  K ∙ R

2
    (5 – 3) 

 

Proof:  The matrix G has R rows representing all BNS and K columns 

representing knots (variables) in G. There are (R – 1) + (R – 2) + . . . + 2 + 1 

= R
2
 – R/2 pairwise comparisons of BNS. For each pairwise comparison of 

BNS, all K columns must be examined to look for commonly shared, and 

thus over-constrained, variable(s) between the two corresponding BNS. 

QED. 

 

The above algorithm needs be applied to all BNS, including those 1 × 1 

BNS born of terminal nodes initially trimmed by step (a) of D37 process 

defined in Section 4.6. Figure 5-7 illustrates an example model graph back 

into which a previously trimmed terminal node (nodal twig) is re-integrated 

as a 1 × 1 BNS. This re-integration reveals knot c as over-constrained 

between BNS1 = { 3, c } and BNS2 = { 1, c, 2, b }. 
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1 

2 

3 c b BNS2 

BNS1 

Re-integrated terminal node 

 

 

Figure 5-7.  Re-integration of previously trimmed terminal node reveals 

model inconsistency 

 

At this point in the process, the model builder needs to examine the set of 

over-constrained variables output by the algorithm in Definition 43. Any 

inconsistency, i.e. directly overlapping intrinsic BNS, inherent within the 

model graph must be resolved before proceeding with the D-38 process. This 

requirement for reconciliation has been established in steps (b) and (d) of D-

38. 

5.5 RELIEF OF OVER-CONSTRAINT 

Steps (b) and (d) of D-38 aim to relieve over-constraint inherent within a 

model graph by eliminating nodes in overlapping BNS. In their current form, 

the procedures for these steps state: 

 

b) If overlapping BNS are found, eliminate nodes through 

negotiation so that all remaining BNS become non-overlapping. 

 

d) If any two of these resultant constraint domains overlap, 

determine whether any knots are over-constrained. If so, by 

negotiation, remove sufficient nodes to relieve the over-

constraint. 

 

However, the removal of relations in their entirety from a model could be 

a bit offensive to the stakeholders who have contributed the relations to the 

model. This contribution represents their voice, their “piece of the pie”, into 

the system design process. The exclusion of such input might not be 
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practical or feasible in some instances, especially when this is the voice of 

the resource sponsor or policy maker who funds the project.  

 

A less dramatic approach, and perhaps a more productive negotiation, to 

achieve buy-in from the affected stakeholder(s), would be to adjust some 

relations, rather than a total elimination of them. One possible technique 

would be to parameterize some constant coefficients to variables. 

Mathematically, the effect on p(G) should be identical, whether we remove a 

node from, or add a knot to a model graph. Such an adjustment technique, 

previously discussed in Section 1.3, could be employed as an alternative to 

steps (b) and/or (d) above. 

 

Let’s examine the example BPG of Figure 5-8, an inherently inconsistent 

model with two indirectly overlapping BNS. By adding a knot to the over-

constrained node 5, the model now becomes inherently consistent. However, 

no computational request can be made on this extended model yet because it 

is perfectly constrained, consisting of two intrinsic 2 × 2 BNS and one 

resultant 1 × 1 BNS. In order to entertain any computational request, another 

knot needs be added to the BPG. 

 

The above technique of extending adjustment to a BPG does not only 

allow more flexibility in system modeling and simulation for the model 

builder, but also facilitates thoughtful inquiry and cooperation among the 

systems engineering and program management team to expand the trade 

space in systems design. 

5.6 EXPANSION OF RESULTANT CONSTRAINT 

DOMAINS 

After all inherent over-constraints have been resolved by the model 

builder (with the aid of above method to detect directly overlapping BNS), 

those “variables” identified as parts of an intrinsic BNS have essentially 

become internal point-constraints per T-11. Their pre-determined values 

must now be propagated throughout the graph network to form constraint 

domains. This flow of constraint will fix other knots along the propagation 

path, and may even result in additional BNS. If two constraint domains share 

at least one common variable, they are said to be overlapping. In other 

words, the commonly-shared variable(s) are over-constrained. As illustrated 

in Figure 4-7, this phenomenon has been briefly discussed.  As such, a 

constraint domain is now formally defined. 
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Definition 44:  Let G be a model graph, and H be an intrinsic BNS 

within G, i.e. H is a subgraph of G. The constraint domain emanated from 

H is the maximum knot-set that includes KH and all other knots in KG which 

are also fixed as a result of constraint propagated from KH throughout G. 

 

 

 

Figure 5-8.  Adding knots to BPG relieves over-constraint and allows for 

computational requests 
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It must be emphasized that constraints may flow out of a BNS even 

further than the Duality Rules (T-10) imply. Even though the Duality Rules 

only work around tree-like structures, constraint can propagate through both 

tree-like and circuit-like structures.  In tree-like structures, the Duality Rules 

can be applied very rapidly, but they will likely bog down in the vicinity of 

circuit structures where the BNS are hiding. It is quite possible that once a 

constraint domain is expanded as far as the Duality Rules allow, new 

resultant BNS may be formed.  With all the knots reached by the Duality 

Rules now fixed (no longer “variables”), the remainder matrix can be used to 

search for more resultant BNS. Subsequently, the Duality Rules can be 

employed again to re-start constraint propagation from the newly discovered, 

and validated, resultant BNS.  This expanded process, beyond the Duality 

Rules, has been termed the Goldilocks Rule to manage constraint flow 

through both tree-like and circuit-like structures. A constraint domain can 

certainly expand even beyond the circuit cluster in which the BNS reside, as 

far as its parent connected component will allow. 

 

Figure 5-9 illustrates a model graph with several constraint domains. On 

the left-hand side, constraint flows from three intrinsic BNS into neighboring 

sub-graphs, which results in two additional BNS. The path of constraint 

propagation runs along the bold edges. On the right-hand side, each resultant 

constraint domain is shown to consist of its intrinsic BNS and the maximum 

sub-graph expanded by propagating constraint from the intrinsic BNS. Note 

that a constraint domain may not only contain BNS, which are simple 

circuits or unions of adjacent circuits, but also tree structures. This is the 

case with constraint domain #2 below. All variables within a constraint 

domain have been pre-determined (fixed) even before any computational 

request is made on the model. 
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  (a) Intrinsic BNS and neighboring resultant BNS   (b) Constraint domains 

within model graph. 
 

Figure 5-9.  Model graph with intrinsic BNS and resultant constraint 

domains 

 

Also note that any interface between a sub-graph which represents a 

constraint domain and the remainder of a model graph is through the knot set 

of the sub-graph. In other words, a constraint domain can be considered as a 

maximum complete sub-model all of whose variables have been inherently 

fixed. To expand the resultant constraint domain within a connected graph, 

the following algorithm refines steps (c) – (f) of D-38 with more details. 

 

Definition 45: Procedure to expand the constraint domain Kcd from a 

BNS within a connected graph G. 

1) Per step (c) of D-38, propagate constraint from each and every knot of 

the source BNS by employing the Duality Rules of T-10 to the farthest 

extent possible within G.  
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a. For each knot discovered along the constraint flow path, add it to 

Kcd.  

b. For each vertex along the path, including the source BNS, remove it 

from G via a vertex-deletion operation (Phan, pp. 101-102). This 

may fragment the remainder graph into several disjoint connected 

sub-graphs as evidenced from Figure 5-9. As a quick check for this 

fragmentation, or disconnectivity, of the remainder graph, Friedman 

[1967, p. 91] has proven that “a model graph with V vertices and 

more than  42V  – V + 2 edges is connected”. 

c. If any over-constraint encountered during propagation, then G is 

inherently inconsistent. Employ technique(s) outlined in Section 5.5 

to relieve local over-constraints. 

d. Re-process G through steps (a) – (h) of D-37 to identify a new set of 

intrinsic BNS since the model topology may be unpredictably 

altered as a result of step (c). Also repeat steps (1a) – (1c) after the 

new set of intrinsic BNS has been validated. 

2) Per step (e) of D-38, locate potential resultant BNS, and possibly 

continue expanding the constraint domain further, by re-processing the 

remainder subgraph(s) through steps (a) – (h) of D-37. 

a. To facilitate computation, a vertex-deletion subgraph can be 

represented by a remainder matrix (see Definition 46 below). 

b. Re-apply the algorithm outlined in Definition 43 to detect 

overlapping among newly located BNS and to assist the model 

builder to resolve any inherent over-constraint among them. 

c. Similarly to steps (1c) and (1d) above, if G is altered to relieve any 

local over-constraint among the newly located BNS, it must be re-

processed through D-37. 

d. Resume propagation of constraint from resultant BNS by re-iterating 

steps (1) – (2c) until no more BNS can be located. As such, Kcd has 

reached its maximum and cannot expand any farther. 

3) Repeat steps (1) – (2) for each and every intrinsic BNS within G to 

define its respective constraint domain. 

4) Per step (d) of D-38, re-apply the algorithm outlined in Definition 43 to 

detect overlapping among the constraint domains defined in step (3). 

a.  If any overlapping detected, then G is inherently inconsistent. 

Employ technique(s) outlined in Section 5.5 to relieve over-

constraints. 
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b. If G is altered to relieve any overlapping among the constraint 

domains, it must be re-processed through steps (a) – (h) of D-37. 

Also re-iterate steps (1a) – (4a) above. 

5) By step (f) of D-38, upon successful completion of step (4b) without any 

more overlapping among the BNS or among their resultant constraint 

domains, G can be concluded as an inherently consistent model graph. 

 

Definition 46:  The remainder matrix representing a vertex-deletion 

subgraph H, denoted as H, of a model graph G is defined as the constraint 

matrix CG] less the rows and columns corresponding to the nodes and 

knots, respectively, which have been fixed within a constraint domain and 

thus removed from G.  

 

Figure 5-10 graphically demonstrates an application of the high-level 

algorithm outlined in Definition 45 above.  

 After the “kissing” circuits and circuit cluster of original model 

graph G have been separated at knots b and d by step (f) of D-37, 

intrinsic BNS1 = { 1, a, 2, b } and BNS2 = { 7, d, 8, g } can be 

identified by step (f).  

 Upon removal of BNS1 and BNS2  from G, the D-37 process is re-

applied to vertex-deletion subgraph H. Again, its “kissing” circuits 

are separated at knot f via step (f) of D-37. And this separation 

results in BNS3 = { 3, c, 4, f } and BNS4 = { 5, e, 6, f } by step (g) of 

D-37.  

 Note that BNS3 and BNS4 over-constrain knot f, which can be 

subsequently detected by applying the algorithm in Definition 43. 
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Figure 5-10. Removal of intrinsic BNS and repeating D-37 locate 

resultant BNS 

 

Step by step, Figure 5-11 below demonstrates another application of the 

algorithm in Definition 45 by employing the example BPG of Figure 5-8: 

 

 The flow of constraint is started from knot b of the intrinsic BNS, as the 

source of internal constraint, into node n5. The vertices of this source 

BNS are removed from the model graph via a vertex-deletion operation 

(Phan, pp. 101-102) to simplify the graph during propagation. 

 

 By the T-10 rule of d(n) – 1 in and 1 out for nodes, constraint continues 

to flow from n5 into knot c, after which n5 is removed to further reduce 

the graph. 

 

 By the T-10 rule of 1 in and d(k) – 1 out for knots, constraint can 

simultaneously flow from c into n3 and n4. However, as a matter of 

practical implementation, the branches of propagation needs be executed 

one of a time, in a single thread of execution. Parallel threads of 

execution for multiple branches may result in various issues with 

concurrency, e.g. unpredictable racing condition. And it would be 
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difficult, if not impossible, to maintain (configuration control over) the 

state of the remainder matrix when it may be modified by several threads 

of execution. As such, for the purpose of demonstration herein, we will 

just trace through one branch of constraint flow from c to n3. 

 

 As knot c is removed to further simplify the graph, the vertex-deletion 

operation stipulates that all edges incident upon c must also be removed. 

And this includes the edge between c and n4 (Phan, pp. 101-102). 

 

 Again, by the T-10 rule of d(n) – 1 in and 1 out for nodes, constraint 

continues to flow from n3 into knot d, after which n3 is removed to 

reduce the graph even further. 

 

 Again, by the T-10 rule of 1 in and d(k) – 1 out for knots, constraint can 

propagate from d to n4. 

 

 Without any outlet from n4, the flow of constraint stalls here. Remember 

that the edge between n4 and c has already been deleted above, and no 

longer exists in the remainder matrix. This violates the T-10 rule of d(n) 

– 1 in and 1 out for nodes. Therefore, the original model can be 

concluded as inherently inconsistent, and no computational requests can 

be made on it. 

 

The procedure outlined in Definition 45 and demonstrated above should 

have better efficiency in terms of both run-time and space-bound than steps 

(c) – (f) of D-38 in their current form. The removal of every vertex 

discovered along the constraint propagation path can repeatedly simplify the 

model graph, and thus reduce the size of the remainder matrix further and 

further. As such, the computational load for subsequent iterations will 

require less and less CPU time and memory resources. 
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Figure 5-11.  Violation of the d(n) – 1 in and 1 out rule for nodes exposes an 

inherently inconsistent model 
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5.7 PROCESSING OF COMPUTATIONAL 

REQUESTS 

“As we observed from Chapter 1 and even more in Appendix A, even 

though the model may be consistent, the probability that any given 

computational request will be allowable is still very small,” remarked the 

manager.  “Can constraint theory assist the math model manager in steering 

him to those computational requests which are allowable?” 

“Certainly,” the analyst assured.  “We can consider another ‘brute force’ 

approach here, where constraint theory can theoretically examine all the 

possible 2
K
 computational requests.  But, as we have already seen, 2

N
 

computations are really out of the question and 2
K 

would be roughly the 

same size.” 

“We can enormously reduce the number of computational requests to be 

analyzed by noting two things,” the analyst continued.  “First, the cognitive 

limitations of any human attempting to understand a result from a math 

model are limited to ‘view spaces’ whose dimensionality ranges from 2 to 5 

at the most.  So the 2
K
 computations are reduced to ~K

5
 -- a tremendous 

reduction.  Second, not all the K variables are equally interesting or 

important; for large models, probably only a few percent of the total number 

of variables would be considered as providing a ‘system level’ overview.  

We can take a hint as to which are the most interesting (or valuable) 

variables by just looking at the computational requests which were 

disallowed.  Assume for example that a failed computational request 

involved the variables a,c,f,m.  We could then ask D38 to examine all 

combinations of three of these and any other of the K  4 variables, and two 

of these and any two other of the K  4 variables, and finally any one of 

these and any three other of the K  4 variables.  This amounts to less than 

4K
3 

examinations, which is over a million possible computational requests 

but can be computed by D38 in just a few minutes.  This should provide the 

manager with many computational requests which are in the ‘vicinity’ of the 

one he wanted and couldn’t have.” 

Given an inherently consistent model graph by steps (a) – (f) of D-38, we 

are now ready to examine in further details the general procedure for 

processing computational requests as outlined in steps (g) – (k). 

5.7.1  INITIAL SIMPLIFICATION OF MODEL GRAPH 

We can again leverage T-11 to simplify a model graph before 

entertaining any computational request made upon it. Since all the knots 

belonging to a resultant constraint domain, previously identified by the 

method outlined in Definition 45, have been internally fixed in values, they 
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can no longer be manipulated as part of any computational request. 

Therefore, the sub-graphs spanning the various constraint domains can be 

removed from the overall model, via a vertex-deletion operation (Phan, pp. 

101-102) after step (f) and before step (g) of D-38.  

 

This reduction can be safely implemented without losing any essential 

information in determining the allowability of any computational request, or 

the processing of an allowable request. Within the framework of such a 

reduced graph, one can avoid many repetitious and unnecessary calculations. 

And computational complexity can be exponentially lessened in terms of 

both run-time and memory-space requirements. This improvement in 

efficiency follows the same concept as presented in step (1b) of Definition 

45 where vertices discovered along a constraint flow path are removed 

during propagation of internal constraint. 

 

Figure 5-12 illustrates above simplification technique. Upon the removal 

of the intrinsic BNS = { 2, 3, 4, c, d, s } which just happens to be the same as 

its resultant constraint domain in this case, model graph G is reduced to sub-

graph H. All computational requests made on G can be evaluated with the 

remainder matrix associated with H. Any request involving c, d or s, as 

dependent or independent variables, can be readily concluded as unallowable 

since their corresponding knots   KH. This immediate determination will 

help avoid the unnecessary propagation of constraint as stipulated by steps 

(h) – (j) of D-38. Allowability of other requests, as well as the processing of 

all allowable requests, can also be computed more efficiently in H than in G 

by the fact that | VH | ≤ | VG | and | EH | ≤ | EG |.  

 

By T-7, the number of possible computational requests on a model with 

K variables is equal to 2
K
. In the above simple example BPG, with | KG | = 8, 

there would have been 2
8
 = 256 computational requests that could be 

possibly made on G. With | KH | = 5, however, the number of possible 

computational requests on H is now only 2
5
 = 32, an order of magnitude less 

than that on G. For real-world models involving hundreds, if not thousands, 

of variables, the reduction in computational complexity would be even more 

significant. 

 

Another advantage of the above simplification technique is that the 

removal of sub-graphs spanning various constraint domains may also break 

up a BPG into several disjoint connected components. In such cases, a 

computational request involving variables not all of which belongs to the 

same connected component can also be quickly determined as unallowable 
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without having to propagate needlessly throughout the graph network. This 

is in accordance with T-5. 

5.7.2  SIMPLIFYING MODEL GRAPH DURING 

CONSTRAINT PROPAGATION 

To evaluate allowability of a computational request made on a model, 

steps (h) and (i) of D-38 repeatedly apply the Duality Rules of T-10 and the 

BNS search process of D-37 to propagate constraint throughout its graph 

network. In their current form, the general procedures for these steps state: 

 

h) Propagate computational paths from all constraint sources throughout 

the model employing the T-10 rules. If any knot is over-constrained, the 

computational request is not allowable. 

 

i) If the computational path does not reach the dependent variable then 

examine the residue for BNS, using D-37, and continue with T-10, 

followed by D-37 as necessary until the computational path can go no 

further. 

 

For computational requests with multiple independent variables as input, 

the processing should initiate the propagation of constraint externally applied 

to one independent variable at a time in a single thread of execution, and 

complete the D-38 procedure as far as T-10 and D-37 will allow before 

starting propagation of constraint from another independent variable. To 

maintain flow control, independent variables should be processed 

sequentially one at a time. If several independent variables are processed in 

parallel, their computational paths may unknowingly collide with 

unpredictable results. Given that, as vertices are discovered one by one along 

the computational path originated from one independent variable, they can 

be dynamically removed from the BPG by a vertex-deletion operation (Phan, 

pp. 101-102). In several ways, this reduction can simplify computational 

complexity, and thus improve efficiency of the iterative process stipulated by 

steps (h) and (i) of D-38. The operational benefits include: 

 

 With the ever-reduced remainder matrix, the D-37 process to locate 

resultant BNS can only execute faster and faster, and require less 

and less computer memory resource with each subsequent iteration, 

than processing the entire model graph each and every time. The 

same can also be said of the T-10 process to propagate constraint. 
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Figure 5-12.  Removal of BNS simplifies a model graph before processing 

any computational request 
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 Deletion of vertices may break up the BPG into several disjoint 

connected components. Before initiating another path of propagation 

from the next independent variable, a quick and easy check can be 

performed to verify this independent variable as belonging to the 

same component as the dependent variable. If not, it can be readily 

concluded that the computational request is not allowable per T-5. 

This immediate determination will help avoid the repetitive and 

unnecessary propagation of constraint from this independent 

variable, as well as others subsequently. 

 

 If the computational path initiated from one independent variable 

discovers the knot associated with another independent variable, 

then the request can be immediately rendered as unallowable.  

 

Theorem 30: If the constraint flow path originated from an independent 

variable x1 as input to a computational request discovers, by the Duality 

Rules of T-10 for propagating constraint throughout a graph network, the 

knot associated with another distinct independent variable x2 of the same 

request, then the request is not allowable. 

 

Proof: Independent variable x2, as input to the computational request just 

as x1, will also be externally constrained by definition. If x2 lies on the 

computational path originated from x1 then x2 is over-constrained once the 

flow of constraint from x1 flows into it. This violates the propagation rule of 

“1 in and d(k) – 1 out” for knots under T-10. Over-constraint on x2 causes 

the model to become inconsistent. And no computational request on an 

inconsistent model is allowable per T-1. 

5.7.3  UNALLOWABLE COMPUTATIONAL 

REQUESTS 

Steps (h) and (j) of D-38 have pointed out two possible scenarios in 

which a computational request becomes unallowable due to over-constraint 

of a knot along the computational path. The following sub-sections will 

discuss other classes of unallowable computational requests.  

5.7.3.1  OVER-CONSTRAINT OF NODES 

For a given computational request, there may exist multiple possible 

computational paths, depending on the order (or sequence) of propagating 

externally-applied constraints. Per T-10, a node along a computational path 

will become over-constrained (or under-constrained) if the propagating rule 
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of “d(n) – 1 in and 1 out” for nodes is violated. Accordingly, such a 

computational request may also be rendered as unallowable.  

 

Figure 5-1 graphically illustrates this situation. If the two constants in the 

bottom half of the graph are propagated first, then knots d and g will be 

discovered as over-constrained as stipulated by steps (h) and (j) of D-38. At 

this time, the procedure can be halted and the computational request declared 

unallowable. However, if the two independent variables in the top half of the 

graph are applied first as external constraints, then node a will be discovered 

as over-constrained. Accordingly, the same computational request can also 

be rendered unallowable and the procedure immediately halted. 

5.7.3.2  RELEVANCY OF DEPENDENT VARIABLES 

Step (k) of D-38 states that: “If the path reaches the dependent variable 

by employing all independent variables, without either over- or under-

constraint along the way, then the computational request is allowable. It is 

acceptable to have local under-constraint elsewhere in the model. If the 

dependent variable can be reached without having to propagate the 

constraint externally imposed on one or more independent variables, then the 

computation is unallowable”. 

 

Per the following concepts in Constraint Theory, another class of 

unallowable computational requests involves extra independent variables 

whose externally-applied constraints are not necessarily used to reach the 

desired dependent variable.  

 

Definition 9 (p. 34): “y is a relevant variable with respect to relations  in 

xyz space means that there exist lines in xyz space parallel to the y-axis that 

are neither entirely within nor entirely outside of the relation set. Thus, y has 

an effect on , or equivalently, the relation p constrains y”. 

 

Definition 14 (p. 40):  “a computational request on a model is allowable 

means that the projection of A onto the view space of the computation 

contains at least one point and, in addition, each variable involved in the 

computation must be relevant to this projection in the sense of Definition 9”. 

 

It has been previously illuminated and asserted (pp. 40, 45) that: “If the 

projection has variables that are not relevant, these variables take on all their 

possible values, and are therefore under-constrained. Allowability requires 

that all the variables of the requested computation be relevant to the 

projection of the total relation onto the computational sub-space.” 
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Let’s consider the computational request e = f1(m, t) made on sub-graph 

H of Figure 5-12. Figure 5-13 illustrates the propagation of constraints 

externally imposed on the independent variables m and t (highlighted with 

double squares). As knot m is initially fixed, its constraint flows into node 6, 

resulting in a 2 × 2 BNS. In turn, this resultant BNS fixes knots a and e, and 

the computational request is thus completed. It was not necessary, or useful, 

to propagate the external constraint imposed on t. Had the constraint on t 

been propagated first (before that on m), the computational path would never 

pass node 1 to reach e. Violating the “d(n) – 1 in, 1 out” rule for propagating 

constraint through nodes, node 1 would have been under-constrained. 

Therefore, this computational request is not allowable since t is irrelevant in 

determining e. In other words, e can be sufficiently determined without t. 

 

 

Figure 5-13.  All independent variables must be relevant for a computational 

request to be allowable 

 

Per T-2, over-constraint must not exist anywhere in the model, for a 

computational request to be allowable, since any sub-model inconsistency 

would “poison” the entire model. However, it is acceptable to have locally 

under-constrained vertices outside of the computational path. For example, 

in Figure 5-14, the computational request m = f2(a) is allowable even though 

variables p and t are locally under-constrained elsewhere. 
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Figure 5-14.  Locally under-constrained vertices outside of the 

computational path are acceptable 

 

5.8 SUMMARY OF CHAPTER AND CONSTRAINT 

THEORY TOOLKIT 

The computational rules used in Chapter 1, “d(n)  1 in and 1 out” for 

nodes and “1 in and d(k)  1 out” for knots, as well as the “BNSs being the 

kernel of constraint” were formally sanctified from the viewpoint of the 

math model’s being a set of relations within the multidimensional space 

defined by the model’s variables.  All these results were seen to be aspects of 

the Goldilocks rule which stated that computational allowability requires that 

the resultant constraint along the entire computational path from independent 

to dependent variables be exactly zero. 

The exhaustive search for BNSs requires 2
N
 examinations of math model 

relation subsets; even for moderate model sizes of N = 100, thousands of 

universe lifetimes are required, even for nanosecond examinations. 

Instead, D-37 can locate the BNSs in only seconds instead of trillions of 

years.  This is done by analyzing the topology of the BNSs which are 

imbedded within the topology of the bipartite graph meta-model, employing 

easily computed features such as connectedness, tree-ness, circuit rank and 

constraint potential.  A key result is the proof that, if there is a BNS within a 

bipartite graph, it can only exist within a circuit cluster (cc) and if the 
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constraint potential of that circuit cluster p(cc) is equal or greater than zero, 

then that circuit cluster contains p(cc) + 1 BNSs.  See Figure 5-15. 

Once the BNSs are located, the model consistency and computational 

allowability are easily determined, as is summarized in Tables 5-1 and 5-2, 

the Constraint Theory Toolkit. 

Figure 5-16 demonstrates a typical scenario for the flow of constraint 

across a small bipartite graph model. 

The many definitions and theorems of Chapters 4 and 5 may appear 

onerous but they are necessary to establish the rules of D-37 and D-38 as 

applicable to any mathematical model of any size.  This is a demonstration 

of the power of generalizability of mathematics.  We start in tiny domains of 

low dimension which we can comprehend, and then extend our 

understanding and tools to dimensions of any size.  As large as the numbers 

2
N 

and 2
K 

are, the number of possible topologies of a bipartite graph is 

unimaginably larger: 2
NK

. 
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Figure 5-15. By employing easily computed topological properties of a model's bipartite 

graph, consistency and allowability checks can be reduced from universe lifetimes to seconds. 
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Figure 5-16. A walk through the trees and tangled clusters. 
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Table 5-1. Constraint Theory Toolkit (Part I). 

To Determine Mathematical Model Consistency: 

Organize the set of regular relations and their relevant variables into a bipartite 

graph (BPG) metamodel with two types of vertices: 

 Nodes (N) which represent relations, and Knots (K) which represent 

variables 

 Edges connect relations (nodes) to their relevant variables (knots); a BPG 

with undirected edges represent the math model; a BPG with directed edges 

represents the computation 

 The degree of a vertex, d(v) is the number of edges which intersect that 

vertex. 

Employ the companion Constraint Matrix (CM) to communicate with computer 

analysis. 

The constraint propagation rules across a BPG are:   

 for nodes: d(n)-1 edges flowing into the node, 1 edge flowing out. 

 for knots: 1 edge flowing into the knot, d(k)-1 edges flowing out. 

Propagate connectivity along BPG edges (or CM dots) to determine connected 

components. 

 If K+N-E=1 in a connected component, it is tree-like; no intrinsic 

constraint in component. 

 If not tree-like, circuit rank=E-K-N+1=number of independent circuits in 

component. 

 If the constraint potential, p(SM), of a submodel = N-K>0, intrinsic 

constraint exists there. 

A submodel wherein N=K is a nodal square (NS); a nodal square with no NS within 

it is a basic nodal square (BNS) which is the kernel of constraint in the math model.  

 Overlapping BNSs (with p(BNSs)>0) indicate overconstraint causing 

INCONSISTENCY. 

 Constraint propagates from the BNSs to resultant constraint domains via 

the above rules. 

 If resultant constraint domains overlap, they will either be redundant or 

INCONSISTENT. 

 Inconsistency must be negotiated by the human model builders to resolve 

overconstraint. 

BNSs can only exist within circuit clusters (cc’s).    

A systematic search for BNSs involves separating the connected components, 

trimming external trees, eliminating internal trees, separating kissing cc’s by 

removing separating vertices, and finally computing the constraint potential of the 

remaining cc’s.  
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Table 5-2. Constraint Theory Toolkit (Part II) 

To determine computational allowability: 

 

If a mathematical model is inconsistent, no computations on it are allowable. 

 

Add the sources of extrinsic constraint -- independent variables and variables held 

constant -- to the sources of intrinsic constraint and propagate constraint through the 

BPG using the propagation rules above.  If overconstraint occurs at any vertex, the 

computation is NOT ALLOWABLE.  If the constraint does not propagate to the 

dependent variable, using the above procedure, search for BNSs which can continue 

the propagation.  If the constraint flow still does not reach the dependent variable, 

the computation is NOT ALLOWABLE due to underconstraint.  If neither over- or 

underconstraint occurs, the computation is ALLOWABLE. 

 

 

5.9 QUERIES FOR THE 

REGULAR STUDENT 

1. For the mathematical model of Problem 4.1, which of these 

computational requests are allowable? If not, why not? 

g = f(r, c), g = f(s, t), m = f(w, h, s, t), h = f(r, w), d = f(g, r) 

 

2. Is the mathematical model of Problem 4.2 consistent? If so, develop 

at least two computational requests on this model. 

 

3. Is the mathematical model of Problem 4.3 consistent? Which of these 

computational requests are allowable? If not, why not? 

n = f(r),  q = f(p),  m = f(n, q),  p = f(m, r),  m = f(p) 

 

4. Prove that the bipartite graph of a model with N relations and K 

variables has 2
KN 

different topologies. 

 

5. Derive the number of possible computational requests can be made 

on a model with N relations and K variables if it were not for T6 and 

if the relations which formed the model were not counted as 

computational requests. 

 

 

 



  

 

 

Chapter 6  DISCRETE AND INTERVAL 

RELATIONS 

 
The diminished utility of metamodels 

 

6.1    METAMODEL ISSUES AND PERSPECTIVES 

“You recall that in Chapter Three, we defined three types of relations,” 

said the analyst.  “The most important of these types -- from the standpoint 

of math modeling -- is the regular relation and was treated in Chapter Four.  

In this chapter, we will look at the other types, called ‘discrete’ and 

‘interval’.  

“This must have represented quite an intellectual leap, starting I presume 

from the findings of regular relations,” the manager suggested. 

“On the contrary,” the analyst differed.  “The original research in 

constraint theory actually started within the domain of discrete relations.  It 

was stimulated by a paper on the solution of simultaneous equations in 

Boolean algebra, written by Antonin Svoboda [10], who was a member of 

Friedman’s PhD committee.  The use of the extension and projection 

operators in set theory was more easily visualized when only points -- rather 

than multidimensional curves and surfaces -- were involved.  To generalize 

even further, we should remember that thinking about ordinals is more 

fundamental and closer to metamathematical language than thinking and 

operating on cardinals.  Logic precedes analysis.” 

The perspectives and tools which we found to be useful for regular 

relations will now be examined for their utility regarding discrete and 

interval relations. 
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6.2  THE GENERAL TAXONOMY AND PRIMARY 

PROPERTY OF DISCRETE RELATIONS 

The discrete relation defined by D19 may appear in a variety of forms, as 

is displayed in Figure 6-1.  Relation 1, a polynomial in a single variable is 

similar to a regular relation, yet it will point constrain its one-dimensional 

space at each of its roots.  Relation 2 is an example of Diophantine equations 

which permit only integers as allowable solutions.  Note that most of the 

equations in Chapter 4 -- such as the definitions of constraint potential and 

circuit rank -- are this type of equation.  Relation 3 is described by a “truth 

table” which lists every point in its allowable space.  Relation 4 is a logical 

or Boolean equation, wherein all the variables take on the values of true or 

false, or more compactly, 1 or 0, respectively.  Finally, Relation 5 -- 

represented by a matrix -- can represent even more abstract mathematical 

forms such as bipartite graphs, via their companion matrices.  In this sense, 

discrete relations can be considered as meta-metamodels for the graph theory 

described in Chapters 2-4. 

All these diverse characterizations of discrete relations can be covered 

by: 

Theorem 31:  Every discrete relation is an intrinsic source of point 

constraint with respect to each of its relevant variables. 

Proof:  By D19, in a discrete relation the intersection of any line with 

that relation is a point or set of points.  By choosing that line to be, in turn, 

each axis of the relation’s space, each of the variables is seen to be point 

constrained by that relation.  QED. 

Thus, the problem of finding sources of intrinsic point constraint and the 

search for BNSs which was given so much attention in Chapter 4 is almost 

trivial for discrete relations. 

In pursuit of constraint theory’s general goal of determining consistency 

and computational allowability, considerations of overconstraint and 

multidirectional constraint propagation, as well as computational flow rules 

will be treated in the following sections. 

6.3    BOOLEAN RELATIONS 

Boolean relations represent a significant portion of the class of discrete 

relations and can be described by logical equations, truth tables, Venn and 

Veitch diagrams, or by the complete mapping of allowable states in the 

hyperspace of relevant variables.  Figure 6-2 presents a simple example of 

the logical equation:  A=BC.  In words, this merely states that A is true (1) if 

B is true (1) and if C is not true (0).  The truth table of Figure 6-2b provides 

the value of A for all possible combinations of B and C.  The Veitch diagram  
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Figure 6-1. Examples of Discrete Relations 

-- essentially a rectangular version of the Venn diagram -- in Figure 6-2c 

also shows all possible values of the implied independent variables B and C 

and provides the value of A for each case.  Sometimes, “forbidden domains” 

on the Veitch diagram are specified.  These are combinations of the input 

variables which can never occur; when forbidden domains intersect domains 
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defined by the logical equation, these forbidden domains take priority.  This 

convention permits the simplification of logical equations which is important 

in the logical design of digital computers.  In accordance with the 

hyperspatial viewpoints discussed in Chapter 2, when the total model is 

defined by a set of simultaneous Boolean equations, the intersection of the 

Boolean equations and the union of the forbidden areas are taken. 

 

Figure 6-2. Boolean relations; and their representations. 
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Both the truth table and Veitch diagram representations suffer from 

implications of independent/variables and forbidden zone ambiguity. 

Figure 6-2d displays the most complete representation of any discrete 

function: the identification of the set of points within the hyperspace of 

relevant variables.  For any binary Boolean equation, this set can reside only 

at the corners of the hypercube formed by the points 0 and 1 along the axis 

of every relevant variable.  That is, these are the values of the variables that 

are allowable by the defined relation.  In the spirit of the four fold way 

presented in Chapter 2, call the set of points that satisfy the equation “A.” 

Let us now examine how the computational rule: (d-1)in/1 out that was 

developed for regular relations applies to Boolean relations.   

Figure 6-3 displays all possible computational paths through the relation 

A=BC.  It shows that for B and C taken as input variables, every one of the 

four possible cases, the (d-1)in/1 out rule works.  (This should not be 

surprising , since the format of the Boolean equation, truth table and Veitch 

diagram were predisposed towards this computational flow.)  However, in 

the cases of A,B or A,C as input variables, it is seen that only half of the 

cases follow the (d-1)in/1 out rule, while the other half result in either 

multiple answers or represent forbidden inputs.  Noting that multiple results 

also can occur in regular relations and can still be carried forward to other 

downstream computations, and that regular relations were defined to exclude 

forbidden inputs, it can be concluded that the (d-1)in/1 out rule weakly 

applies to discrete functions. 

Figure 6-3 explores the more extreme case -- from our regular relation 

perspective -- of a single input variable.  There exists one case out of six 

where the single variable A, set equal to 1, can uniquely determine the 

values of B and C.  This is a case of 1 in/(d-1)out for nodes, which is 

surprising if we are used to thinking only of regular relations. 

In summary, it can be seen that the computational flow across discrete 

relations depends far more on the precise nature of the relation than on 

metamodel rules such as (d-1)in/1 out. 

Next, let us examine the applicability of constraint potential, (N-K), to 

determine the consistency of Boolean relations with K variables and N 

relations. 

As noted above, a Boolean relation of K variables can exist only at the 

corners of a hypercube formed by the coordinates 0 and 1 along each of the 

K dimensions of the relation.  Therefore, each of the N relations can be 

represented by a “binary number” containing 2
K
 states of A’s for points 

contained by the relation and empty spaces which do not contain the relation.   

Fig 6-4 provides the general format of a Boolean model.  Note that, 

despite the fact that it is a rectangular array with the rows referring to 

variables and columns referring to relations, this is not a constraint matrix as 
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defined in chapter 2.  The total number of rows equals the number of 

possible states of any given Boolean function, and equals 2K, which is the 

power set of the K states.  The total number of columns equals all possible 

Boolean functions which is the power set of the 2K possible states and 

equals 2^(2^K).   In other words, the number of columns is the power set of 

the number of states which is the power set of the number of variables. 

 

Figure 6-3. Computational Flows of A=BC 
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We now pose the question: If all the N columns refer to non-redundant 

Boolean equations, what is the largest N which will not cause the total model 

to become inconsistent?   The answer to this question results in: 
Theorem 32:  For a 2-valued Boolean model consisting of K variables 

and N independent (non-redundant) relations, the largest N which will not 

overconstrain the model is:  Nmax = 
122 K

. 

 
Proof:  Recall that, from Chapter 2, the model will be inconsistent if the 

total allowability set is the null set.  Also recall that the intersection of a null 

set with any other set results in a null set.  By examining Figure 5-4 (b), we 

note that exactly half of the columns can be paired with the other half such 

that their intersections are null sets.  (Specifically, look at columns 1 and 16, 

2 and 15, …etc.)   Also note that no other columns have null set 

intersections.  Therefore the maximum number of relations which will not 

result in a null set is exactly half the total number of columns.  In short, the 

maximum N which assures consistency is half the number of columns, or: 

Nmax  =  ( ½ )( 
K22 )  =  ( 2

-1 
)( 

K22 )  =  
122 K

.  QED. 
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Figure 6-4. Proof of T32 
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Figure 6-5. The Constraint Potential for Boolean relations is weaker than for regular relations. 

Thus, the constraint potential (N-K) for regular relations can be replaced 

by (N-
122 K

) for Boolean relations, and as is shown in Figure 6-5, it is a 

weaker indication of the model’s inconsistency.  Once again, we see that the 

specific properties of the relations must be examined and the metamodels, so 

useful in Chapters 4 and 5, are less useful for discrete relations.  

Additional properties and methods of discrete relations are therefore 

discussed in the following. 

6.4    TOPOLOGICAL IMPLICATIONS 

These two types of discrete relations will have importance from a 

constraint standpoint: 

Definition 47:  A full discrete relation is an explicit discrete equation in 

which each point in the space of independent variables provides at least one 

value of the dependent variable. 
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Figure 6-6. Examples of Full and Perfect Expressions. 

Definition 48:  A perfect discrete relation is a full discrete relation in 

which each point in the space of independent variables determines a unique 

value of the dependent variable. 

Examples of these definitions are shown in Figure 6-6.  Relation 1 is not 

full since only three of the possible eight points in the abc-space provide 

values for x.  Relation 2 is not full because the point def is specified as being 

forbidden and thus has no output to y.  The map, 3, relating to the 4-state 
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variables u and v, is full if v is the dependent variable but is not full if u is 

made the dependent variable.  Thus, “fullness” and “perfection” are 

properties of the explicit expression of a relation rather than of the relation 

itself.  Relation 4 is full with respect to x but is not perfect because the 

“input” point (y=0, z=1) yields two values for x: =+1 and –1.  Finally, 

Relation 5 is perfect with respect to the ternary variable a because every 

point in bc-space determines a unique value for a. 

Theorem 33:  Every Boolean relation which is perfect with respect to at 

least one of its variables, is a universal relation. 

Proof:  Express the relation in its perfect, explicit form.  By D48, every 

point in the product space of the input variables produces an output; thus the 

relation is universal.   QED 

Theorem 34:  Every tree subgraph of Boolean relations each of which is 

perfect with respect to at least one variable, is consistent.  

Proof:  By T33, the tree has only universal relations, and by T9, this tree 

of universal relations is consistent.  QED 

Examples of the application of these Theorems are shown in Figure 6-7.  

In Figure 6-7a, the mere specification that Relations 1, 2 and 3 are Boolean, 

and that they are written in explicit form without specific forbidden domains 

allow us to conclude that they are perfect with respect -- at least -- to the 

dependent variables shown.  By T34, then, the tree in Figure 6-7a is 

consistent.  Note that the dependent variables of Relations 1, 2 and 3 do not 

indicate an obvious direction of computation or constraint flow. 

Figure 6-7b presents a more general case of a discrete tree, mixing the 

binary variable y with the ternary variables v, w, x and z, and the quaternary 

variable r.  Inspection of the truth tables for Relations 4, 5 and 6 discloses 

that each relation is universal.  Thus, by T9, this discrete tree is consistent. 

That these rules cannot be generally extended to submodels whose graphs 

are circuits is demonstrated in Figure 6-7c.  Despite the fact that both of the 

Relations 7 and 8 are perfect with respect to all their variables, and both are 

universal, neither T9 nor T34 are applicable since they are connected in a 

circuit cluster.  In fact, a plot on a klm-space Boolean map will show that the 

intersection of their relation sets is the null set for the given Relations 7 and 

8, rendering the model inconsistent. 

6.5  ALLOWABILITY OF DISCRETE 

COMPUTATIONS 

A general approach to the determination of the allowability of any 

computational request made on discrete relations is described below. 

The basic concept employed is a modification of the principles outlined 

by A. Svoboda [15] in solving simultaneous systems of Boolean equations. 
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Figure 6-7. Trees of Discrete Relations. 

Let us begin by applying a viewpoint established in Chapter 2.  Refer to 

the top of Figure 6-8, where the discrete Relation 1 is shown in perfect form 

with respect to the 4-state variable z.  Given this representation of the 

Relation 1, let us request the computation:  x=f(y,z), where x is binary and y 
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is ternary.  By Figure 2-14, we must first take the xyz-space “view” of A1 by 

taking the projection:  PrxyzA1.  This is accomplished in Figure 6-8 by 

replotting the 12 points of A1 from the z by wxy map to the w by xyz map, 

suppressing the value of variable w, and replotting in an x by yz map.  Note 

that PrxyzA1 contains only 11 points due to the fact that two points in A1 

project onto a single point,  (x,y,z)=(1,1,1) in the xyz view.  The final step is 

to transform the x by yz map of PrxyzA1 into a “function map” wherein the 

outputs for x are plotted as a function of the 12 possible points in the yz input 

space.  As can be seen in the lower right hand corner of Figure 6-8, only 5 

input points in yz-space yield unique results, while 3 input points yield 

multiple outputs and the remaining 4 yield no outputs at all; they are 

“forbidden.” 

 

Figure 6-8. Determination of X=f(y,z) by projection and replot. 

6.6    INEQUALITY RELATIONS 

As defined by D19, an interval relation is any relation such that its 

intersection with a line is an interval containing an infinity of points. 
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For all practical cases, the interval relation may be represented by a 

system of inequality equations, or more generally by a combination of 

inequality and “equals or greater (less) than” equations. 

Definition 49:  Inequality relations are defined by “<” and “>”.  The 

boundary set of equations are formed by replacing each < and > with equal 

signs. 

Figure 6-9 provides examples of D49. 

 

Figure 6-9. Comparisons between pure inequality equations, equals or greater (less) than 

relations, and boundary sets. 

It was previously noted that, for regular relations, the BNS was required 

to provide intrinsic point constraint, and for discrete relations, intrinsic point 

constraint was always provided.  We are now prepared to summarize the 

point constraint situation for all classes of relations: 

Theorem 35:  In discrete relations, intrinsic point constraint always 

occurs; in regular relations, intrinsic point constraint occurs in the presence 

of a BNS; in inequality relations, intrinsic point constraint never occurs. 

Proof:  The first portion is true by T31; the second is true by T11; the last 

is true because inequality relations do not include their boundary sets and 

thus all intersections either include an infinite number of points or the null 

set.    QED 

It is noteworthy that in a broad range of applications of math models, it is 

the boundary set which is of the greatest interest.  An example of this is the 

general optimization techniques of linear programming where the 

optimization of a linear criterion occurs only at the intersection of the 
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boundary sets of the constraining functions.  Thus for these important 

applications, the inequality sets collapse into sets of regular relations. 

The next consideration is to examine the utility of the constraint potential 

in determining consistency.  As can be seen in Figure 6-10, the number of 

inequality constraints can increase indefinitely without driving the overall 

model into inconsistency.  This observation permits us to state another 

generalization across all relation classes: 

Theorem 36.  For model consistency, in discrete relations, Nmax=
122 K

;  

in regular relations, Nmax=K; in inequality relations, there is no Nmax. 

Proof: By T32, by T26, and by inspection of Figure 6-10.  QED 

 

Figure 6-10. The number of inequality constraints can increase to infinity without driving the 

model's relation set to null (inconsistency). 

Next, examining the propagation of constraint or computation through 

the metamodel, we invoke the transitivity rule of inequalities to prove: 

 

Theorem 37:  If a>b, and b>c, then a>c. 



 Constraint theory 

 

152 

As a side observation, if a, b and c are preferences, then the intransitive 

preference ordering of a>b>c>a is considered irrational by decision 

theorists. 

Let us consider the implications of T37 on the allowability subset A in K-

space.  In the upper part of Figure 6-11, the “A in K-space” interpretation of 

the Theorem is presented.  For ease of visualization, only the unit cube in the 

upper octant is shown.  The two intersecting planes are the boundary sets for 

Relations 1 and 2 and the resultant allowability set A1 ∩ A2 is the 

tetrahedron with the corners o,x,y and z. 

The projection of A1 ∩ A2  on the ac plane is seen to cover half the plane 

and corresponds to the interval relation a>c, substantiating T37.  Thus we 

see that a and c are mutually constraining: constraint on a will propagate to c 

and vice versa. 

On the other hand, consider the lower part of Figure 6-11, where the 

inequality b>c has been replaced by b<c rendering T37 inapplicable. 

6.7    SUMMARY 

 Although the general principles of constraint theory are still applicable 

to discrete and interval relations, the metamodel approach is less 

powerful than for regular relations.  Therefore the metamodel 

viewpoints must be augmented by direct examination and computation 

of the full model itself. 

 Certain generalizations can be made across all relation classes: 

 

Regarding: Discrete Relations Regular 

Relations 

Interval 

Relations 

Intrinsic Point 

Constraint 
At every node At a BNS only Never 

Maximum N 

without 

overconstraint 

Nmax = 
122 K

, Nmax=K Nmax=infinite 

 

The new allowability space becomes the pyramid with corners at 

o,x,v,w,and z.  The projection of this pyramid onto the ac plane covers the 

entire plane and the variables a and c now do not exert constraint on one 

another, in the view defined in Chapter 2. 
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Figure 6-11. Transitive and intransitive inequality relations.  
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6.8    PROBLEMS FOR THE DISCRETE STUDENT 

6.1 Given: a model of random Boolean relations with K variables and N 

relations.  Derive: Probability of inconsistency as a function of K,N. 

6.2 Construct a model comprised of three ternary discrete relations and 

determine under what circumstances the constraint flow follows the 

nodal rule: (d-1)in/1 out. 

6.3 Construct two Boolean functions and find a third function which 

satisfy both. 

6.4 Derive the general n-ary version of Theorem 32 

 

  



  

 

 

 

 

Chapter 7  THE LOGICAL STRUCTURE OF 

CONSTRAINT THEORY 

 
A Compact Summary 

 
 

7.1  OVERVIEW 

This chapter provides a summary of all the postulates, definitions and 

theorems presented in Chapters two through Six.  Finally, two graph 

structures are presented, showing the interrelationships between the elements 

of constraint theory’s logical structure. 

7.2  POSTULATES AND PHILOSOPHICAL 

ASSUMPTIONS 

Mathematical model building is a rapidly expanding activity.   Since 

computers do not suffer the dimensionality limitations of the human mind, 

modeling is the best hope for systems engineers to manage the complexity of 

modern and future systems.  All model builders and users share (or should 

share) these philosophical views and postulates: 

Mathematics has been able to capture an incredible portion of natural and 

man-made phenomena with amazing depth and accuracy.  Just as valuable is 

the ability of mathematics to logically integrate many diverse views of the 

world, generalizing new findings and helping to manage the vast 

dimensionality of complex systems. 
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However, mathematics usually presents a simplified picture of the real 

world and the variables in its models may not be defined coherently across 

all members of a diverse team.  These key issues are not within the domain 

of constraint theory and it is presumed that they have been attended to prior 

to the methods presented in this book. 

Even when the issues of model accuracy and definitions have been 

handled perfectly, there still exist crucial issues of well-posedness.  These 

are in the domain of constraint theory and the structure presented here 

addresses them.  Specifically, are models consistent and are the 

computational requests made of them allowable? 

Table 7-1 presents the postulates which have been directly involved in 

the development of constraint theory. 

Table 7-1. Postulates 

 
1. Model Builders inherently wish the relations in their model to 

be locally universal.  (That is, if any relation applies a 
constraint to a variable, that variable will be able to propagate 
that constraint to an adjacent relation without causing 
inconsistency.) 

2a. The laws of physics and other sciences, if they are fully 
understood, are fundamentally consistent. 

2b. The intent of mathematical model builders is to represent 
phenomena accurately; thus if overconstraint -- or 
inconsistency -- occurs, it is unintentional. 

 

7.3   DEFINITIONS 

The forty definitions employed in Chapter Two through Six are listed in 

Table 7-2. 

Most of these definitions either contribute to other, more complex 

definitions, or to theorems.  In seven cases -- marked by an asterisk -- the 

definitions are a result of a set of theorems and represent a computational 

procedure. 

7.4 THEOREMS 

The thirty-three theorems derived in Chapters two through five are listed 

in Table 7-3. 

The proofs of all these theorems -- except T12, “Hall’s Theorem” -- are 

provided as they are first introduced in the chapters.  The proof of Hall’s 

theorem can be found in the reference. 
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Table 7-2. Definitions 

 

D1: Set, Subset    D26: Adjacency 
D2: Variable * D27: Connectedness algr’m 
D3: Model Hyperspace * D28: Sep. Vertex Algorithm 
D4: Product Set * D29: Tree Algorithm 
D5: Relation * D30: Twig pruning algr’m 
D6: Constraint    D31: Circuit Rank 

D7: Union, Intersection    D32: Simple Circuit 
D8: Projection, Extension    D33: Circuit Vector 
D9: Relevance * D34: Circuit Rank Algr’m 
D10: Bipartite Graph    D35: Graph Taxonomy 
D11: Model Graph    D36: Independent BNS 
D12: Constraint Matrix * D37: BNS Location 
D13: Consistency * D38: General Procedure 
D14: Allowability    D39: Overlap BNS 
D15: Connected Component    D40: CharVec of BNS 
D16: Tree Structure    D41: BNS Matrix 
D17: Circuit Cluster    D42: Overlapping Factor 
D18: Universal Relation    D43: Algorithm to detect 
D19: Relation Classes            Overlapping BNS 
D20: Locally Universal    D44: Constraint Domain 
D21: Regular Relations    D45: Expanding Constraint 
D22: Constraint Potential            Domain 
D23: Degree of a Vertex    D46: Remainder Matrix 
D24: Over Constraint    D47: Full Discrete Rel’n 
        Under Constraint    D48: Perfect Discrete 
D25: Nodal Square            Relation 

   D49: Inequality Relations 
        Basic Nodal Square  

                                                       

7.5 GRAPHS OF THE LOGICAL STRUCTURE OF 

CONSTRAINT THEORY 

The graphical portrayal of the relationships between definitions and 

theorems is presented in Figure 7-1.  Although this graph has two disjoint 

sets of vertices, it is not a bipartite graph because in several cases, there are 

edges connecting definitions to other definitions, and edges connecting 

theorems to other theorems. 

Another graphical portrayal is presented in Figure 7-2.  This graph is a 

generalization of Figure 7-1 and suppresses many of the details but 

emphasizes the major logical thrusts of the theory.   The more important 

definitions -- such as the BNS -- and the more important theorems -- such as 

the BNS location theorem -- are highlighted. 
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7.6 COMPLETENESS 

The author makes no claim that these summaries and Constraint Theory 

are complete.  

Indeed, it his hope that this work will stimulate further research and study 

into the increasingly important objective of managing complexity. 
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Table 7-3. Theorems  

 

T1: If a model is inconsistent, no computational requests on it 
are allowable 

T2: If any submodel is inconsistent, the total model is 
inconsistent 

T3: If two relations have no variables in common, they are 
consistent 

T4: If two disconnected components are internally consistent, 
they are consistent with each other 

T5: No computations across disconnected components are 
allowable 

T6: Allowability of a computational request is independent of 
the dependent variable 

T7: There exist 2K possible computational request of a K-
variable model 

T8: There exist 2N possible submodels of an N-relation model 

T9: Any set of universal relations whose graph is a tree is 
consistent 

T10: Computational rules for models with a tree structure: 
   nodes: d(n)-1 inputs --> 1 output 
   knots: 1 input --> d(k)-1 output 

T11: Every BNS exerts point constraint on each of its variables 

T12: Hall’s theorem 

T13: A subgraph is a tree if and only if V-E=1 

T14: The number of independent circuits in a graph = circuit 
rank of graph 

T15: The graph taxonomy of D35 is mutually exclusive and 
exhaustive 

T16: If  SUM Pi > -n,  then, at least one of the Pi > -1 

T17: If p(G)=N-K>0, G contains at least one BNS 

T18: No BNS can have a subgraph with a constraint potential>0 

T19: Every BNS must be connected 

T20: No BNS can be a tree 

T21: No BNS can have a tree which is not part of a circuit 

(continued) 
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Table 7.3 Continued – Theorems  

 

T22: No BNS can lie across circuit clusters containing a 
separating vertex  

T23: No BNS can lie across a tree-like network of circuit 
clusters linked by a tree 

T24: No BNS can lie across a tree-like network of circuit cluster 
linked to other circuit clusters by trees 

T25: Every BNS is the union of adjacent circuits within a circuit 
cluster 

T26: If a circuit cluster (cc) has p(cc) > 0, then it has at least 
p(cc)+1 BNSs 

T27: The maximum number of BNSs in a cc=2c(cc) 

T28: BNSi and BNSj are overlapping if i, j ≥ 1 

T29: Solution time to detect overlapping BNS and identify over-
constrained variables using a matrix G with R rows and K 
columns ~  K ∙ R2 

T30: If the constraint flow path originated from an independent 
variable x1 as input to a computational request discovers, by 
the Duality Rules of T-10 for propagating constraint 
throughout a graph network, the knot associated with 
another distinct independent variable x2 of the same 
request, then the request is not allowable 

T31: Every discrete relation is an intrinsic source of point 
constraint 

T32: For a consistent model of Boolean relations, Nmax = 122 K

 

T33: Every Boolean relation which is perfect with respect to at 
least one of its variables is a universal relation 

T34: Every tree subgraph of perfect Boolean relations is 
consistent 

T35: In discrete relations, intrinsic constraint always occurs 
 In regular relations, intrinsic constraint sometimes occurs 

(in a BNS) 
 In interval relations, intrinsic constraint never occurs 

T36: For consistency in discrete relations, Nmax=
122 K

 
 For consistency in regular relations,  Nmax=K 
 For consistency in interval relations, Nmax=infinity 

T37: If a > b, b > c then a > c 
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Figure 7-1. Graph of Constraint Theory Definitions and Theorems 
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Figure 7-2. Logical Thrusts of Constraint Theory 



  

 

Chapter 8  EXAMPLES OF CONSTRAINT 

THEORY APPLIED TO REAL-WORLD 

PROBLEMS 

 
 

 
 

 

8.1   APOLOGIES NOT REQUIRED 

The examples provided in this Chapter are drawn from applications in the 

aerospace industry that the author has experienced.  Rather than apologize 

for this apparently undemocratic representation, it should be noted that it 

was the aerospace industry which gave the first major fertile ground for the 

discipline of systems engineering to manage the ever increasing complexity 

of integrating new technologies, equipment and missions. 

The first example applies constraint theory to the operations analysis of 

new systems; it is an elaboration of the example presented in Chapter 1.  The 

second example deals with the kinematics of free-fall weapons, which, 

despite the advent of “smart bombs” still has utility in many operational 

scenarios.  The third example is a dynamic analysis of the control of the 

trajectory of an asteroid employing mass drivers. 

8.2   COST AS AN INDEPENDENT VARIABLE 

(CAIV) 

For several decades, the development process of new complex systems 

by the United States Department of Defense (DOD), has permitted the 

dominance of technical performance over cost and schedule.  As a 

consequence, the vast majority of programs suffered major cost overruns and 
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schedule slips.  Essentially, performance was the primary driving 

requirement -- or “independent variable.”  In order to achieve a greater 

measure of cost control and containment, the DOD initiated a management 

thrust called, “Affordability, or Cost as an independent variable (CAIV)”.  

Figure 8-1 provides a briefing chart used by the US Air Force Research 

Laboratories (AFRL) that is intended to represent this new emphasis.   

 

Figure 8-1. US Air Force Research Laboratories Briefing chart on Cost as an Independent 

Variable. 

At this broad level of detail, the math model employed is similar to the 

example of Chapter 1.  Mathematically, this type of problem is ideally suited 

to the viewpoint and tools of Constraint Theory.  Simply stated, a model is 

built, and rather than follow the original computational flow from 

performance specifications to cost, the flow is reversed; the independent and 

dependent variables are switched.  The new problem can be stated as: 

“Given budgetary constraints on newly developed systems, what is the 

optimum system design which provides the most acceptable performance 

without exceeding these budgetary constraints?” 
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Let us flesh out in more detail the AFRL chart to attain a model which 

can perform the desired analysis.  Table 8-1 presents a list of variables; note 

that K=14 across three levels of detail.  Table 8-2 lists the relations, with 

N=16.  Noting that N>K, we should be immediately concerned with model 

consistency. 

Table 8-1. Variables for Model 
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The top-level bipartite graph shown in Figure 8-2 is completely tree-like 

and has K=14 (representing all the variables) and N=5.  Clearly, there is no 

concern about overconstraint or consistency at this level. 
Table 8-2. Relations for Model 
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However, the 9 variables at the bottom of the graph are all inter-related, 

as is shown in Figure 8-3 where 6 additional nodes are added to indicate 

these relations.  For example, node 7 describes how the cost of development, 

CD, influences the radar signature, and node 9 describes how CD influences 

the accuracy (CEP) of weapon delivery.  Although we now have 

accumulated several circuits, the total constraint potential is still less than 

zero, and there are no local domains where the constraint potential exceeds 

zero -- thus, there are no BNSs.  This can be verified by examining Figure 8-

5 which displays the constraint matrices for the various levels of detail in the 

model. 

 

Figure 8-2. Top-Level Bipartite Graph. 

The constraint situation gets far more serious when the final 5 nodes at 

the bottom of Table 8-2 are included in the model.  Note that each of these 

last five nodes are “policy demands” specifying additional requirements on 

reliability, weight, radar signature, etc, without directly relating them to a 

higher level system criterion.  The addition of these is devastating to the 

consistency of the model.  As is shown in Figure 8-4, the application of 
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nodes 12, 14 and 16 drives CD into inconsistency.  Similarly, the application 

of nodes 10 and 15 drives CP into inconsistency. 

Thus, the bipartite graph and constraint matrix provide the managers and 

analysts visibility regarding the model’s consistency, paving the way 

towards an eventual “cost as an independent variable” analysis.  When 

overconstraint does occur, it can be pinpointed and -- just as was done in 

Chapter 1 -- allowing policy nodes such as 12-16 of Table 8-2 to be 

reconsidered for model inclusion.  In short, rather than specifying a 

mandatory level of reliability, signature, etc., let these variables “run free” in 

the network of all other relations and variables.  In this fashion, optimum 

values can be computed rather than dictated. 

 

Figure 8-3. Top- and Middle-level bipartite graph. 
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Figure 8-4. Full Bipartite Graph. 
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Figure 8-5. Constraint Matrix for CAIV 
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8.3 THE KINEMATICS OF FREE-FALL WEAPONS 

Consider the traditional bombing problem: an aircraft attempts to attain a 

kinematic state which allows a free-falling bomb to impact on a target.  A 

great diversity of avionic equipment exists to measure the aircraft 

kinematics, covering a great range of accuracy and cost.  “What are the best 

variables to measure?” is a common question.  Before this question can be 

properly answered, a more fundamental one must be addressed: “What sets 

of variables are necessary and sufficient for a bombing solution, i.e., exactly 

‘constrain’ the trajectory?”  That this latter question is nontrivial is shown in 

the following: 

Define the following ten kinematic parameters of an aircraft with respect 

to its target (See Figure 8-6): 

 

X horizontal distance between aircraft and target 

X horizontal velocity of aircraft 

Z vertical distance between aircraft and target 

Z vertical velocity of aircraft 

r range from aircraft to target 

r range rate, aircraft to target 

S angle from horizontal of range vector 

S angle rate of range vector 

V aircraft velocity magnitude 

d aircraft velocity angle from horizontal. 

 

For the sake of the example, only the kinematics within the bomb trajectory 

plane are considered.  All the variables listed previously except X are 

measurable by at least one type of airborne instrument.  We may now state 

the problem more specifically. 

Which subsets of (X, Z, Z, r, r, S, S, V, d) form complete descriptions of 

the aircraft in-plane kinematics?  Call these describing sets. 

From physical reasoning, the immeasurable set (X, X, Z, Z) completely 

defines the kinematics where (X, Z) define a two-dimensional positional 

vector, and (X, Z) define a two-dimensional velocity vector.  Assuming for 

the moment that every describing set has four variables, then 
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four-element subsets of the measurable set must be examined to determine if 

it is a describing set.  This can be an extremely tedious problem since only a 

few of these sets can be merely examined by inspection for easy 
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classification as a describing set (Z, r, V, d), or not a describing set (X, Z, V, 

d) 

 

Figure 8-6. Weapon Delivery Variables (initial conditions). 

 

Constraint theory provides both a point of view and a procedure to solve 

this type of problem whether it be ten-dimensional or 500-dimensional.  

First, a mathematical model which relates all the relevant variables is 

established.  Second, meta models consisting of a bipartite graph and a 

constraint matrix are established to analyze the constraint properties of the 

original model.  Third, these meta models are tested and adjusted, if 

necessary, for internal consistency.  Fourth, the classification of any subset 

of measurables as a describing set or not a describing set can be made by 

systematically propagating constraint through the meta model.  In this 

procedure, the subset to be analyzed acts as the input variables and any 

known describing set such as (X, X, Z, Z) acts as the output variables of a 

computational network. 

Whether constraint theory is applied or not, the stated problem cannot be 

solved unless the couplings and interactions between the kinematic variables 

are clearly delineated as a set of relations.  One such set may be the 

following: 

. . . 

. 

. 

. 
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1:  r = (X
2
 + Z

2
)

1/2 

2:  r = (XX + ZZ)(X
2
 + Z

2
)

-1/2
 

3:  X = r cos S 

4:  Z = r sin S 

5:  S = tan
-1

 (Z/X) 

6:  S = (ZX – XZ)(X
2
 + Z

2
)

-1 

7:  V = (X
2
 + Z

2
)

1/2
 

8:  Z = -X tan d. 

 

Each relation is correct.  More correct relations can be written, but the 

preceding list seems to be sufficient, whatever that means.  Normally, the 

analyst must rely on his intuition or judgment regarding the point at which 

he should cease adding relations to his model.  The bipartite graph and 

constraint matrix meta models are presented in Figure 8-7. 

The fundamental criterion for math model consistency is that the total 

model relation set is not the null set.  This simply means that the set of points 

in the total ten-dimensional space which satisfied every one of the eight 

relations must include at least one point, otherwise some part of the model is 

intrinsically incompatible with another part.  From the constraint point of 

view, model inconsistency is due to overlapping domains of intrinsic 

constraint. 

Each relation in the example above is an n-1 dimensional regular surface 

where n is the dimension of the relation.  Thus they are all regular relations, 

and the source of intrinsic constraint in this type of model is always a basic 

nodal square (BNS), a special subgraph of the total bipartite graph which is 

recognized by an equal number of vertices of each type.  A logical first step 

in the consistency testing is to search the meta models for BNSs, thereby 

locating constraint sources. 

Since for even this small model, a systematic search through all possible 

submodels involves examination of 256 cases, it is clear that more powerful 

means must be used to search for the BNS. 

Every BNS is the union of simple nodal circuits.  We know that every 

BNS must be a circuit cluster and can contain no treelike appendages.  

Examination of either Figures 8-7a or 8-7b reveals that the variables r, s, v, 

and d form trees attached to the main circuit cluster; therefore, the nodes 2, 

7, 8, and 6 cannot be part of a BNS.  Temporarily stripping these nodes 

(“trimming the trees”) from the model, we get the circuit cluster depicted in 

Figure 8-8. 

. . 

. . . 

. . 
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. 
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Figure 8-7. Constraint Matrix Meta-model. 

Since Figure 8-8 has the same number of each type of vertex (constraint 

potential equal zero), it is a nodal square.  Since every node has a degree of 

three, there cannot exist smaller nodal squares of dimension 2x2 within 
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Figure 8-8.  (The dimension of a nodal square must always be equal to or 

greater than the degree of any of its nodes.)  Since the degree of every knot 

is also three, nodal squares of dimension 3x3 cannot exist within Figure 8-8 

either.  (In order for a nodal square of dimension n to contain a nodal square 

of dimension n-1, there must exist a knot of degree 1.)  Therefore, Figure 8-8 

is a nodal square which does not contain smaller nodal squares and is thus a 

basic nodal square.  Moreover, it is the only BNS in the entire model. 

 

Figure 8-8. Circuit Cluster. 

We can generally expect that a BNS subgraph of a model of regular 

relations will point constrain each of its variables.  This does not violate the 

fundamental criterion for model consistency. 

But let us examine this BNS in the context of the purpose of the model. 

We certainly did not expect the model to determine specific values of X, Z, r, 

and S.  Yet this is just what four equations covering four unknowns threaten 

to do.  Trying to resolve this absurdity, we focus our attention on this portion 

of the original model and discover that relations 3 and 4 are redundant to 

relations 1 and 5.  3 and 4 are therefore removed. 

The new constraint matrix is shown in Figure 8-9.  The total constraint 

potential (relations minus variables) is now equal to –4, which agrees with 

our physical reasoning that the total system should have 4 degrees of 

freedom.  Moreover, the subgraph 1-5 dealing only with position, and the 

subgraph 7-8 dealing only  with velocity, each  have  constraint  potentials of  

–2, further agreeing with our physical notions of position and velocity 

vectors in a plane. 

Certainly the set (X, X, Z, Z) is a describing set.  Any other set (a, b, c, d) 

will also be a describing set if, by setting unique values for (a,b,c,d), we can 

compute unique values for (X, X, Z, Z).  From the constraint matrix point of 

view, we apply extrinsic constraint at the four knots a, b, c, d, and allow the 

constraint to propagate throughout the matrix.  If constraint propagates to (X, 

. . 

. . 

. . 
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X, Z, Z) and no other variable is over-constrained, then the trial set (a, b, c, 

d) is a describing set since it constrains the trajectory just as completely as 

(X, X, Z, Z). 

 

Figure 8-9. Final Constraint Matrix. 

Constraint propagation through a constraint matrix follows very simple 

rules which can be easily mechanized on a computer.  When constraint is 

transmitted to a variable via one of its edges, it is transmitted through the 

variable via all its other edges.  When constraint is transmitted to a relation 

via all but one of its edges, it is transmitted through the relation via its 

remaining edge.  If this procedure does not completely fill the graph, then 

the residue is investigated for BNSs.   

Using this procedure, the describing sets can be found rapidly.  It will be 

more compact to list the measurable sets which are not describing sets.  (See 

Table 8-3.)   

Each of the remaining 99 sets of four measurables, even the unlikely 

XZrS, ZrSV, and ZrSd, perfectly constrains the trajectory and is a describing 

set. 

8.4 THE DEFLECTION OF AN EARTH-

THREATENING ASTEROID EMPLOYING 

MASS DRIVERS 

Since the early 1990’s there has been an increasing awareness of the risk 

to earth by a strike from a large comet or asteroid.  It is estimated that if such 

a near-earth object (NEO) of 1 km or larger struck the earth it would disrupt 

our global ecology and cause a billion human casualties.  Much has been 

. . 

. . . . . . . . . . 

. . 
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accomplished regarding the detection of these NEOs; the number of 

catalogued NEO’s has grown from under 5% to over 50% of their estimated 

population from the early 90’s to the early 00’s. 

Table 8-3. The set that are non-describing sets 

 
These sets overconstrain velocity: 
 

 XZZV XZSV XrVd 

 XZZd XZSd XSVd 

 XZVd XZSV XSVd 

 XZrV XZSd ZrVd 

 XZrd XZVd ZrVd 

 XZrV ZZVd ZSVd 

 XZrd XrvD ZSVd 

 
These sets overconstrain position: 
 
 XZrS ZrrS ZrSV 

 ZZrS ZrSS ZrSd 
 

 

However, much less attention has been paid to the deflection or intercept 

of these threats to human civilization.  The methods which provide the 

highest energy density delivered to the threatening object are nuclear.  But 

there is great resistance to testing and putting nuclear devices into space, the 

bomb may split the NEO in unpredictable ways, it may pollute the 

atmosphere, and the coupling of the energy to the NEO is critically 

dependent on the NEO’s structure and composition. 

The most robust and lowest technical risk approach is to employ 

traditional chemical propulsion to the NEO by attaching a conventional 

rocket to the object and transfer orbit-changing momentum.  But the cost of 

this approach is enormous; not only must the chemical energy be delivered 

to the NEO, the reaction mass must be transported there also.  Imagine a 

Saturn V rocket engine firing continuously for a year or more! 

A concept which has received far less attention is to employ a mass 

driver – essentially a linear motor which converts electrical energy into 

kinetic energy.  Once a mass driver is transported and installed on the NEO, 

the required energy can be obtained with a solar collector and the required 

reaction mass can be obtained from the NEO itself.  The following analysis 

. . . . . . 

. . . . . 

. . . . . . 

. . . . . . 

. . . . . . 

. . . . . 

. . . . . . 

. . 
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employs constraint theory to perform trade studies of mass driver designs for 

NEO deflection. 

 

Figure 8-10. Schematic of Mass Driver installation on asteroid. 

Refer to Figure 8-10 for a schematic of the mass driver installation on the 

NEO.  The NEO, or asteroid, has mass M and diameter da.  A solar collector 

of diameter ds collects energy for the mass driver.  The mass driver is a long 

coil which propels mass from the NEO in buckets with a velocity, v.  The 
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action of the mass driver ejecta causes a reaction by the asteroid, moving it 

in the opposite direction with velocity, V.  In order to miss the earth within a 

time-to-go, tgo, the NEO must move a distance S – normally considered to be 

the earth’s radius.  (Generally, the optimum application of force for orbit 

changing is parallel to the asteroid’s velocity vector.  However this analysis 

stresses the case of final approaches with short time-to-go and small angles 

between the orbits of earth and asteroid.) 

The kinematic relations can be captured by the bipartite graph in Figure 

8-11.  The variables are: 

 

S= distance moved perpendicular to the asteroid trajectory 

a= acceleration of asteroid 

t=  time 

Vf= asteroid final velocity 

 

and the relations are: 

 

s=f1(a,t)=(1/2)at
2
  Vf=f2(a,t)=at 

 

Figure 8-11. Bipartite Graph for initial kinematic model. 

We can now determine whether computational requests can be made of 

this simple model: 

The computational request, v=f3(a,s) is allowable and is: asv 2  

which is a quite familiar formula.  The computational request, v=f4(s,t) is 

also allowable and it is:  Vf=2s/t, but in the memory of the author, it was not 

familiar.  He does not recall ever seeing this formula, and doesn’t remember 

that, in a system undergoing constant acceleration with zero initial velocity, 

the final velocity is twice the average velocity.  This was an unexpected 
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bonus of this simple application of Constraint Theory.  The value of the f4 

relation is that we can easily compute the total energy requirement to deflect 

the NEO from impact with the Earth, for any given time-to-go. 

Let us now expand the model from kinematics to dynamics and write: 

 

Total energy imparted to the asteroid = Er=(1/2) MVf
2
=2M(Vave)

2
 

The energy available from the solar collector, Es=AFEtgo, where: 

 

A=the solar collector area 

F=the solar flux density at that distance from the sun 

E=the flux-to-electrical energy conversion efficiency 

tgo = time-to-go 

 

Expanding the bipartite graph to include these variables and relations 

yields Figure 8-12. 

 

Figure 8-12. NEO Kinematics, NEO energy required and solar energy available. 

It would be tempting to assume that all the energy collected by the solar 

array is available to provide the asteroid with the required energy, that is, the 

relation designated as “*” in Figure 8-12 is simply:  Er=Es.  Unfortunately, 

this is far from correct, since both energy and momentum relations must be 

satisfied: 
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Energy:  Es=(1/2)MVf
2
+(1/2)mv

2 

Momentum:  MVf=mv 

 

Define a new variable, k=v/V=M/v -- that is, the ratio of asteroid mass to 

ejecta mass, or equivalently, the ratio of ejecta velocity to asteroid velocity.  

Substituting k into the energy equation yields: 

 

(Asteroid kinetic energy/ejecta kinetic energy)=1/k 

 

In other words, only 1/(1+k) of the available solar energy couples to the 

asteroid, the remainder accelerates the ejecta. 

Paradoxically, the situation gets worse as the ejecta velocity increases 

and the time-to-go increases.  These results run counter to the “general 

wisdom” that high ejecta velocity is good -- after all, much hard work has 

been expended in driving up the exhaust velocity of rocket engines and mass 

drivers -- and that the more time we have for deflection, the better off we 

are.  The general wisdom is still correct in their original domains and 

problem statements, but does not precisely apply to the issues of asteroid 

deflection. 

All these results can be summarized on a single chart, Figure 8-13.  

Following the standard conventions employed to compare NEO deflection 

concepts, the two fundamental independent variables are time-to-go and 

asteroid diameter.  The dependent variable is the diameter of the solar 

collector, ds.  At the center of the chart it can be seen that a solar collector of 

only 100 meter diameter is required to deflect a 1 kilometer asteroid if one 

year of time-to-go is available.  The chart also presents an additional 

relation: the locus of ds=da.  On this locus, the solar collector is the same size 

as the asteroid and the time-to-go becomes the dependent variable. 

In summary, although the number of variables of this model was not 

exceptionally high, the constraint theory methodology provided useful 

kinematic and dynamic insight, as well as managing the computational flow 

through a confusing set of equations. 
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Figure 8-13. Results of the mass-driver analysis. 

 



  

 

Chapter 9  MANAGER AND ANALYST MEET 

AGAIN 

 
Gists and Schizophrenia 

 
 

The analyst and manager met again to celebrate their newfound 

friendship and camaraderie. 

“Would it be fair to ask if there is an overarching perspective to this 

book?” asked the manager, still a little overwhelmed. 

“Not really fair,” replied the analyst, “but I’ll try:” 

 

THE GIST OF IT ALL 

Technology’s ratchet is forcing systems into ever higher complexity. 

Our greatest hope in managing complexity is math modeling. 

But these models’ dimensionality is incomprehensible to any human. 

By performing computations on the model, we can optimize designs as 

well as understand the systems’ performance and phenomena. 

But most of these computations are not allowable,  

and it gets far worse with increasing dimension. 

Computations are not allowable because they are not well-posed. 

Allowable computations can only be made on a consistent model and 

they must possess a proper constraint flow. 

The kernel of constraint in a model is the basic nodal square (BNS) 

and overlapping BNS’s cause inconsistency and overconstraint. 

The topological properties of the model’s bipartite graph metamodel 

provide practical clues for locating (and reconciling) BNS’s. 

Bipartite graphs are most useful for regular relations. 

 

“Alternatively, another summary from a somewhat different viewpoint is 

presented in Figure 9-1,” the analyst contributed. 
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“These are not very brief ‘gists,’” complained the manager.  “Haven’t 

you heard the saying: ‘That which is good and short is doubly good’?” 

“Yes, I have,” agreed the analyst, “but brevity depends on a shared 

experience -- which we didn’t have originally -- and a deep understanding of 

the language we’re using.  Normally, the richer the language, the briefer the 

meaningful messages can become.  If nothing else, this book has introduced 

you to new directions of mathematics, which is a special type of language.” 

“Speaking of language, it can reasonably be argued that constraint theory 

sits on a bridge between mathematics and qualitative language.  All 

languages have built into their grammatical structure the primitive concepts 

of “none,” “one” and “many.”  --I have no horse, I have one horse, I have 

many horses.  The rhythm and pivotal concepts of constraint theory follow in 

analogous ways: 

 

Regarding paths between parts of a bipartite graph: 

 no paths:  the parts are in different components 

 one path:  the parts are connected by a tree-like structure 

 many paths:  the parts are within a simple circuit or a circuit cluster 

Regarding circuit rank, c(G): 

 c(G) = 0:  no circuits exist in G  

 c(G) = 1:  one independent circuit must exist in G  

 c(G) > 1: multiple independent circuits must exist in G  

Regarding constraint potential, p(G): 

p(G) ≥ 0:  BNS must exist in G. 

  

“But it’s regrettable, isn’t it, that the bipartite graph couldn’t be as useful 

for discrete and interval relations as it is for regular relations?”   

“I do wish it would be more broadly applicable,” agreed the analyst, but 

can you name me any branch of mathematics that is equally useful over all 

applications?  Math tends to be very specialized into specific application 

domains.  Consider the vast body of math that analyzes linear systems, 

despite the fact that most real-world systems are nonlinear.  On the bright 

side, regular relations presently represent the most common type of relation 

used in math modeling, so if it’s limited to a domain, at least it’s the most 

significant domain.” 

“As I promised in Chapter One,” continued the analyst, “Constraint Theory 

really occupies just a simple portion of all mathematics.  Consider John 

Barrow’s ‘Structure of Modern Mathematics’ [16] shown in Figure 9-1, 

where Constraint Theory is represented only in the simplest lower right-hand 

corner.  We made substantial use of bipartite graphs which are with graph 

theory  and  closely  related  to  hypergraphs since the  constraint matrix  of a  
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bipartite graph is essentially identical to the incidence matrix of a 

hypergraph [17].” 

 “There is another bright side,” the analyst added.  “This book is only the 

first venture into a new world of applied mathematics, and I’m hopeful that 

far more research will be accomplished in the future.” 

“I hope so too.  We’ve been through a lot together,” commented the 

manager, “more than I had expected at the beginning.” 

“Yes,” agreed the analyst, “our interactions seemed to take on a life of 

their own, far exceeding the expectations from the original seeds of our 

discussions.  In a way, that’s a testimony to the richness and importance of 

the area.” 

“Speaking of richness, you seem to have had a great diversity of prior 

experience to provide the basis for such an invention as constraint theory,” 

complemented the manager. 

“Well yes, I suppose I have,” admitted the analyst.  “I had the good 

fortune to have worked in the fields of systems, mechanical, electrical and 

civil engineering, applied mathematics, computer science, control systems, 

surveying, soil mechanics, structural design, rockets, guidance and control, 

instrumentation, steam power plants, environmental systems, pressure 

sensors, accelerometers, altimeters, air data computers, missile fueling 

systems, stellar inertial navigation, electro-optical sensors, acoustic terminal 

homing sensors, optical gyroscopes, electronic countermeasures, airborne 

radar, artificial intelligence, and low observables technology, to name a 

few.” 

“Very impressive,” beamed the manager. “I too have had the good 

fortune to be involved with a great variety of programs, including the V-2 

ballistic missile, the Redstone, Jupiter and Thor missiles, the Baldwin Hills 

reservoir, the San Fernando Valley Steam Electric Plant, the Skybolt air-

launched ballistic missile, the F-5 fighter aircraft, the Advanced medium 

range air-to-air missile, the brilliant antitank submunition and the B-2 stealth 

bomber.  In fact, I believe I’m the only person to have worked on both the 

V-2 and the B-2.  Additionally, I have contributed to workshops for all 

branches of the US Department of Defense, NASA, DOE, NSF and NATO.” 
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Figure 9-1. The Structure of Modern Mathematics  

From: John D. Barrow, The Book of Nothing, Pantheon Books, 2000, p152 
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 “Do you think it a coincidence that the list of technologies are generally 

relevant to the list of programs?” asked the analyst. 

 “Not if you realize that we’re really the same guy,” both observed.  “And 

the dialogues we used were merely an expository mechanism to describe a 

new field and illuminate unfamiliar concepts.  We were attempting -- 

without daring to be compared to them --to use dialogue in the manner of 

Plato, Galileo and even Mark Twain in his philosophical work, ‘What is 

Man?’ 

 

Roses are red, 

violets are blue. 

I am schizophrenic, 

and so am I. 

 

 

 





  

 

 

Appendix A  COMPUTATIONAL REQUEST 

DISAPPOINTMENTS; RESULTS OF 

THE USC ALLOWABILITY 

PROJECT 

 
 

 
 

In order to construct a useful and trustworthy mathematical model, one 

must gather authoritative data and relations, ask the advice of experts in the 

domains of each submodel, assure that all uses of each variable agrees 

semantically, and laboriously imbed the structure into a computer.  After all 

this painstaking work, it would be hoped that one could derive new 

understandings across the many domains of the submodels and exercise wide 

liberty in making computational requests of the math model. 

It has been said of Carl Friedrich Gauss [19] that he “achieves greatness 

in his work not through deep, abstract mathematical thinking, but rather 

through an incredible vision of how the various quantities in the problem are 

related, a vision that guides him through extraordinary computations that 

others would likely abandon as futile.” 

As was thoroughly discussed in the main text, a crucial impediment to 

the allowability of computational requests is that the model is not consistent 

due to intrinsic overconstraint.  Clearly, no computational requests are 

allowable on an inconsistent model.  If this inconsistency is removed by 

eliminating an appropriate number of submodels there still may exist 

intrinsic basic nodal squares (BNSs) which apply constraint to all their 

relevant variables.  

Although the model has been rendered consistent, none of the variables 

relevant to the BNSs can participate as an independent variable, dependent 
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variable, or variable held constant.  This significantly reduces the number of 

allowable computational requests. 

Unfortunately, even if all the BNSs were to be removed -- making the 

model completely free of intrinsic overconstraint and point constraint, the 

likelihood of any given computational request being allowable is still quite 

low.  Examples may clarify this disappointing fact. 
 

Consider the trivial case for N=1; the model has 

only one node and K knots.  There are 2
K 

possible 

computational requests, but only one allowable 

computation (identical to the original contributing 

submodel.)  Thus, the probability of allowability, 

p(a) equals 1/2
K
 = 2

-K
.  If K=4, then p(a) = 1/16.   

Next, consider a model with N=2 having a tree 

structure and with K1 variables relevant to N1 and 

K2 variables relevant to N2.  Since one of the 

variables is shared, the total number of variables is 

K1+K2-1 and the total number of possible 

computational requests = 
1212
KK

.  The total 

allowable computational requests are the two 

contributing submodels, plus K1-1, plus K2-1, 

which merely sums to K1+K2.  Thus, for this case, 

1

21

212

)(
)(






KK

KK
ap  

If K1=K2=4, then p(a) = 1/16 again. 
If the N=2 model has a circuit structure with a 

single circuit, then two of the knots are shared and 

the total knots in the model = K1+K2-2.  The total 

number of allowable computations here is only 4, 

so in this case, 
2212

4
)(




KK
ap , and if the K’s = 

4, p(a) = 1/16 (again!!) 

This remarkable coincidence of p(a) = 1/16 does not extend to more 

complex models.  Continuing this mode of analysis becomes exceedingly 

complex with higher N and K; the number of possible computational 

requests for a simple model of only N=10 already exceeds 1000.  Thus let us 

skip ahead a bit to the region of K=6,8 and N=4,6 which was employed in 

Chapter 1 to demonstrate how even these low dimensions can exhibit 

interesting behavior.  We will employ the results of the USC Computational 

Allowability project [1] wherein three engineering graduate students 

employed the techniques of Chapters 4 and 5 and exhaustively performed 

allowability analyses on the models shown below. 
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In the analyses to follow, a key “cognitive limitation” was placed on the 

total number of computational requests to be considered: only 2, 3 and 4 

dimensional requests were analyzed.  (For example, x=f(y,z) is defined as a 

three dimensional request.)  This limitation was employed for two reasons: 

 

(a) most importantly, dimensions of 5 and higher require complex 

“carpet plots” to understand and are very difficult for most people 

to perceive, and  

(b) with the constraint potential of the examples equaling -2, it is 

highly unlikely that computational requests of dimension higher 

than 4 would be allowable anyway.   
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Figure A-1. Bipartite Graph Topological Structures Examined. 

Thus, instead of examining all 2
K
 conceivable computational requests we 

only examine 
)!4(!4

!

)!3(!3

!

)!2(!2

!







 K

K

K

K

K

K
of them.  For K=6, 

only 50 out of the total possible of 64 were examined, for K=8, only 154 out 

of the total possible of 256 were examined. 

Figure A-1 summarizes the ten bipartite graph topological structures 

which the team examined.  Table A-1 summarizes the results of the 1228 

different computational requests which were made on these ten topologies. 
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Table A-1. Summary of Computational Request Allowability Analysis 

 

Struct-
ure 

K N E C B # 
Examined 

# 
Allowable 

% 
Allowable 

A 6 4 12 3 0 50 13 26% 
B 6 4 11 2 0 50 12 24 
C 6 4 10 1 0 50 9 18 
D 8 6 18 5 1 154 6 4 
E 8 6 18 5 0 154 23 15 
F 8 6 17 4 1 154 6 4 
G 8 6 16 3 1 154 6 4 
H 8 6 15 2 1 154 6 4 
J 8 6 14 1 1 154 3 2 
K 8 6 13 0 0 154 6 4 

TOTALS 1228 90 7.3% 
 
 
LEGEND: 
 

Structure: Bipartite graph topological structure shown in Figure A-1 
K:  Number of Knots, or variables 
N:  Number of Nodes, or relations 
E:  Number of Edges, or relevancies 

C:  Number of independent circuits, or circuit rank of the graph 

B:  Number of Basic Nodal Squares 
# Examined:  Number of computational requests which were analyzed 
# Allowable:  Number of requests which were computationally allowable 
%:  Percent of the requests which were allowable 
 

 

The conclusion is rather dramatic:  the overall probability of allowability 

was only 7.3%.  If the analysis had been extended to all 2
K 

computational 

requests, the percent allowability would have been much less. 

Not surprisingly, those topologies which were devoid of BNSs had the 

highest allowabilities, but even then it was only about 20%.  Therefore it 

should be abundantly clear that an allowability analysis must be performed 

on every computational request before the programmers jam it into the 

machines. 
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Worse yet, it is the author’s conjecture that -- as the model 

dimensionality increases to 100, 1000 and beyond -- the absolute number of 

allowable computational requests will increase, but the percentage of 

allowability based on the total number of possible requests will decrease as 

illustrated in Figures A-2 and A-3. 
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Figure A-2. Typical values of A&T for K = 10, 100, 1000 
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Figure A-3. A, T, & A/T vs. K 



  

 

Appendix B  GRAPH THEORY OVERVIEW 

 
Why was the Bipartite Graph Chosen? 

 
 

A general graph, or graph, consists of a set of vertices, some pairs of 

which are connected by a set of arcs, or edges. 

A bipartite graph (BPG) is a graph such that its vertices can be 

decomposed into two disjoint sets, X and Y, and its edges only connect 

vertices in set X to vertices in set Y. 

Any property of a general graph is also a property of a bipartite graph, 

but not vice versa (Table B-1).  For example, both the general and bipartite 

graphs have connected components, trees and circuit structures.  However 

only the bipartite graph has the property of constraint potential and the 

structure of basic nodal squares. 

Graphs have been used for many decades as mathematical metamodels.  

Mason, et al [20], applied signal flow graphs (SFG) to the analysis of 

complex systems where the functions were linearly separable.  Friedman 

[21] applied inverse signal flow graphs (SFG) to a broader class of systems.  

Figure B-1 provides a comparison between how the signal flow graph, the 

inverse signal flow graph and the bipartite graph assign portions of their 

structure to the mathematical concepts of variable, relation and relevancy. 

 

 SFG SFG BPG 

Variable Vertex Edge Knot 

Relation Edge Vertex Node 

Relevancy Edge Edge Edge 
 

Figure B-1. The definitions of Three Types of Graph Theory Metamodels. 
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For the purposes of Constraint Theory, the bipartite graph metamodel 

was chosen over the other alternatives because it is more general 

topologically and functionally, as well as the fact that it can represent both 

the model and the computations performed on it. 

Figure B-2 demonstrates the greater generality of the BPG by showing 

that any SFG can be represented by a BPG, but most BPGs cannot be 

represented by a SFG or an SFG.  Figure B-3 demonstrates the greater 

generality of the BPG by showing that the SFG is limited only to linearly 

separable functions where the BPG can represent any function. 

 

 

 

 

 

 

 

Table B-1. Graph Theory Overview. 

 
General Graph: A set of vertices, some pairs of which are 

connected by a set of arcs (or edges) 
 
Bipartite Graph:  The vertices have two species and the 

arcs connect only two different species 
 
Any property of a general graph is also a property of a 

bipartite graph, but not vice versa 
 
Graphs have been used for many decades to describe 

computations in complex networks; ie; Signal Flow Graphs 
 
The Bipatite Graph was chosen over the Signal Flow 

Graph because it is more general topologically and 
functionally and because it represents both model and 
computation 
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Figure B-2. BPG Characteristics (1). 
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Figure B-3. BPG Characteristics (2). 

 



  

 

Appendix C  THE LOGIC OF "IF" AND "IF AND 

ONLY IF" 

 
 

 
 

Theorem 1 states that inconsistency implies computational non-

allowability.  More compactly, we can state: “nonallowability if 

inconsistent.”  If the reverse, “inconsistent if nonallowable” were true then 

we could state, “nonallowability if and only if inconsistent.  (For even 

increased compactness, “if and only if” is often contracted to “iff”.) 

Actually, Theorem 1 is an “if” statement, not an “iff” statement.  If a 

model is inconsistent, then no computation on it is permitted.  However, the 

reverse is not always true because there are many other possible 

computability problems even with consistent models.  Actually, the vast 

majority of the theorems presented in Chapters 3 and 4 are “if” theorems, not 

“iff” ones.  Another example of a one-way “if” theorem is Theorem 25 

which states that a BNS must always lie within a circuit cluster.  Many 

students then wrongfully assumed that -- whenever they identified a circuit 

cluster—they have found a BNS. 

On the other hand, Theorems 13 and 14, dealing with the topological 

properties of trees and circuits, are indeed two-way “iff” theorems. 

In order to appreciate the logic of “if” and “iff” statements more deeply, 

let us examine Figure C-1 which presents a Venn Diagram that displays the 

events of consistency, allowability and their interactions. 
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Figure C-1. Logical Analysis of Theorem 1. 

 



   

 

Appendix D  ALGEBRAIC STRUCTURES 

 
 

DEFINITIONS AND PROPERTIES OF GENERAL VECTOR SPACES  

(Gross & Yellen, 2006, pp. 687 & 690; Anton, 1977, p. 127) 

 

Definition D-1:  A binary operation * on a non-empty set A is a function 

f: A × A   A, given by f [ (a, b) ] = a * b. The set A together with a binary 

operation * is denoted ( A, * ). 

 

Definition D-2:  The binary operation * on set A is said to be associative 

if for a, b, c  A, ( a * b ) * c = a * ( b * c ), and commutative if for a, b   

A, a * b = b * a. 

 

Definition D-3:  An element e    A is an identity element in ( A, * ) if 

for all a A, a * e  =  e * a  =  a. And for all a    A, an element a’  A  is an 

inverse of a in ( A, * ) if a * a’  =  a’ * a  =  e. 

 

Definition D-4:  A group G = ( G, * ) is a non-empty set G and a binary 

operation * that satisfy the following conditions: 

 The operation * is associative. 

 G  has an identify element. 

 Each g   G has a unique inverse in ( G, * ), denoted g
-1

. 

 

Definition D-5:  An abelian group is a group whose operation is 

commutative. In an abelian group, the binary operation is commonly denoted 

“+” and called sum. 

 

Definition D-6:  A field F = ( F, +, • ) is a set F together with two 

operations, + and • (generically called addition and multiplication), that meet 

the following conditions: 

 ( F, + ) is an abelian group. 

 ( F – {0}, • ) is an abelian group, where 0 is the additive identity. 
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 a • ( b + c )  =  ( a • b  +  a • c )  and  ( a + b ) • c  =  ( a • c ) + ( b • c 

). 

 

Definition D-7:  The finite field GF(2) consists of the set Z2  =  { 0, 1 } 

together with the mod-2 operations +2 and •. Thus: 

 0  +2  0  =  1  +2  1  =  0  (this operation is identical to the logical 

operation of exclusive OR) 

 0  +2  1  =  1  +2  0  =  1 

 0  •  0  =  1  •  0  =  0  •  1  =  0 

 1  •  1  =  1 

 

Definition D-8:  A vector space over a field (of scalars) F is a set V (of 

vectors) together with an operation + on V and a mapping, called scalar 

multiplication from the Cartesian product F × V to V ( (a, v)  av ), such 

that the following conditions are satisfied for all scalars a, b  F and all 

vectors v, w  V: 

 ( V, + ) is an abelian group, where the notation “+” is being used to 

denote both addition of scalars in field F and addition of vectors in 

set V. 

 ( a • b ) v  =  a ( bv ). 

 ( a + b ) v  =  av  +  bv. 

 a ( v + w ) v  =  av  +  aw. 

 ev  =  v, where e is the multiplicative identity of field F . 

BINARY SET OPERATIONS (Gross & Yellen, 2006, pp. 197-198) 
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Definition D-9:  Let s1, s2, . . . , sn be any sequence of objects, and let A 

be a subset of S = { s1, s2, . . . , sn }. The characteristic vector of subset A, 

denoted charvec ( A ), is the n-tuple whose j
th
 component is 1 if sj A, and 0 

otherwise. 

 

In the model graph G of Figure D-1 below, EG = { e1, e2, e3, e4, e5, e6, e7 

}. Cycle A has as its edge set EA = { e1, e2, e3, e4 }, and cycle B has as its 

edge set EB = { e3, e5, e6, e7 }, both of which are subsets of EG. By Definition 

D-9 above, charvec ( EA ) =  ( 1, 1, 1, 1, 0, 0, 0 ), and charvec ( EB ) = ( 0, 0, 

1, 0, 1, 1, 1 ). 

 

 
 

e1 e2 e3 e4 e5 e6 e7

A charvec (EA) 1 1 1 1 0 0 0

B charvec (EB) 0 0 1 0 1 1 1

Cycle

Characteristic

Vector of

Edge Set

Edges

 
 

Figure D-1. Cycles and characteristic vectors of their edge sets 
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Definition D-10:  For graphs A and B, the union of their edge sets EA 

and EB is the set of all edges which are either in EA or in EB, or both. 

Symbolically,  e  EA U EB  if  e   EA  or  e   EB. 

 

In Figure D-2 below, edge set EA = { e1, e2, e3, e4 } and edge set EB = { 

e3, e5, e6, e7 }.  Thus, their union set EA U EB = { e1, e2, e3, e4, e5, e6, e7 }. 

Note that charvec(EA U EB) is formed by combining the respective 

components of charvec(EA) and charvec(EB) with the bitwise inclusive OR 

operator. In C/C++, this operator has the syntactical symbol of “ | ”, e.g. ( 0 | 

0 )  =  0;  and ( 0 | 1 )  =  ( 1 | 0 )  =   ( 1 | 1 )  =  1. In this case, charvec ( EA 

U EB )  =  ( 1, 1, 1, 1, 1, 1, 1 ). 

 

 

 

e1 e2 e3 e4 e5 e6 e7

A charvec (EA) 1 1 1 1 0 0 0

B charvec (EB) 0 0 1 0 1 1 1

1 1 1 1 1 1 1

Cycle
Characteristic

Vectors

Edges

charvec ( EA U EB )

 

 

Figure D-2. Union of edge sets and its characteristic vector 
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Definition D-11:  For graphs A and B, the intersection of their edge sets 

EA and EB is the set of all edges which are in both EA and EB. Symbolically:  

e  EA   EB  if:  e  EA  and  e   EB . 

 

In Figure D-3 below, edge set EA = { e1, e2, e3, e4 } and edge set EB = { 

e3, e5, e6, e7 }.  Thus, their intersection set EA   EB = { e3 }. Note that 

charvec ( EA   EB ) is formed by combining the respective components of 

charvec ( EA ) and charvec ( EB ) with the logical operator AND where 1 

means true, and 0 means false. Symbolically, ( 0 AND 0 )  =  ( 0 AND 1 )  =  

( 1 AND 0 )  =   0;  ( 1 AND 1 )  =  1. In this case, charvec ( EA   EB )  =  ( 

0, 0, 1, 0, 0, 0, 0). 

 

 

 

e1 e2 e3 e4 e5 e6 e7

A charvec (EA) 1 1 1 1 0 0 0

B charvec (EB) 0 0 1 0 1 1 1

0 0 1 0 0 0 0

Cycle
Characteristic

Vectors

Edges

charvec ( EA ∩ EB )

 

 

Figure D-3. Intersection of edge sets and its characteristic vector 
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Definition D-12:  For graphs A and B, the difference EA  EB is the set 

of all edges which are in EA but not in EB. Note that the difference is not 

necessarily commutative, i.e. ( EA  EB )  ≠  (EB – EA ).   

 

As demonstrated in Figure D-4 below, edge set EA = { e1, e2, e3, e4 } and 

edge set EB = { e3, e5, e6, e7 }, therefore the difference set EA  EB = { e1, e2, 

e4 }. However, the difference set EB  EA = { e5, e6, e7 }.  

 

 

 
Figure D-4. Difference set ( EA  EB )  ≠  difference set (EB – EA ) 
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Definition D-13:  For a graph G, let WE(G) denote the set of all subsets 

of EG, i.e. the power set of all edges in G. The ring sum of two elements E1 , 

E2   WE(G) is defined as:  
 

                     E1     E2  =  ( E1  E2 )  U  ( E2  E1 ) 
 

Figure D-5 below illustrates graphically an application of ring sum in 

which two cycles A and B are combined to form a new cycle. Note that 

charvec ( EA   EB ) is formed by combining the respective components of 

charvec ( EA ) and charvec ( EB ) with the bitwise exclusive OR operator. In 

C/C++, this operator has the syntactical symbol of “ ^ ”, e.g. ( 0 ^ 0 )  =  ( 1 

^ 1 )  =  0;  and ( 0 ^ 1 )  =  ( 1 ^ 0 )  =  1. 
 

 

 

Figure D-5. Ring sum EA    EB  =  ( EA  EB )  U  ( EB  EA ) =  ( 1, 1, 

0, 1, 1, 1, 1 )  
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